train.py 17.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
10 11
from collections import defaultdict

12
import paddle.fluid as fluid
B
Bai Yifan 已提交
13 14 15
sys.path.append(os.path.dirname("__file__"))
sys.path.append(
    os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))
16
from paddleslim.common import get_logger, VarCollector
17 18 19 20
from paddleslim.analysis import flops
from paddleslim.quant import quant_aware, quant_post, convert
import models
from utility import add_arguments, print_arguments
21
from paddle.fluid.layer_helper import LayerHelper
22 23
quantization_model_save_dir = './quantization_models/'

24 25
from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass

26 27 28 29 30
_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
31
add_arg('batch_size',       int,  128,
32 33 34
        "Minibatch size.")
add_arg('use_gpu',          bool, True,
        "Whether to use GPU or not.")
35
add_arg('model',            str,  "MobileNetV3_large_x1_0",
36
        "The target model.")
37
add_arg('pretrained_model', str,  "./pretrain/MobileNetV3_large_x1_0_ssld_pretrained",
38
        "Whether to use pretrained model.")
39
add_arg('lr',               float,  0.001,
40 41 42
        "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy',      str,  "piecewise_decay",
        "The learning rate decay strategy.")
43
add_arg('l2_decay',         float,  1e-5,
44 45 46
        "The l2_decay parameter.")
add_arg('momentum_rate',    float,  0.9,
        "The value of momentum_rate.")
47
add_arg('num_epochs',       int,  30,
48 49 50 51
        "The number of total epochs.")
add_arg('total_images',     int,  1281167,
        "The number of total training images.")
parser.add_argument('--step_epochs', nargs='+', type=int,
52
        default=[20],
53 54 55 56 57 58 59
        help="piecewise decay step")
add_arg('config_file',      str, None,
        "The config file for compression with yaml format.")
add_arg('data',             str, "imagenet",
        "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period',       int, 10,
        "Log period in batches.")
60 61 62 63 64 65
add_arg('checkpoint_dir',         str, None,
        "checkpoint dir")
add_arg('checkpoint_epoch',         int, None,
        "checkpoint epoch")
add_arg('output_dir',         str, "output/MobileNetV3_large_x1_0",
        "model save dir")
66 67
add_arg('use_pact',          bool, True,
        "Whether to use PACT or not.")
68 69
add_arg('analysis',          bool, False,
        "Whether analysis variables distribution.")
70 71 72 73 74 75 76

# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def piecewise_decay(args):
77 78 79
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    step = int(
        math.ceil(float(args.total_images) / (args.batch_size * len(places))))
80 81 82 83 84 85 86
    bd = [step * e for e in args.step_epochs]
    lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
    learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
        regularization=fluid.regularizer.L2Decay(args.l2_decay))
87
    return learning_rate, optimizer
88 89 90


def cosine_decay(args):
91 92 93
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    step = int(
        math.ceil(float(args.total_images) / (args.batch_size * len(places))))
94 95 96 97 98 99
    learning_rate = fluid.layers.cosine_decay(
        learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
        regularization=fluid.regularizer.L2Decay(args.l2_decay))
100
    return learning_rate, optimizer
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


def create_optimizer(args):
    if args.lr_strategy == "piecewise_decay":
        return piecewise_decay(args)
    elif args.lr_strategy == "cosine_decay":
        return cosine_decay(args)


def compress(args):

    if args.data == "mnist":
        import paddle.dataset.mnist as reader
        train_reader = reader.train()
        val_reader = reader.test()
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_reader = reader.train()
        val_reader = reader.val()
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))

    image_shape = [int(m) for m in image_shape.split(",")]
B
Bai Yifan 已提交
128 129
    assert args.model in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    if args.use_pact:
        image.stop_gradient = False
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    cost = fluid.layers.cross_entropy(input=out, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)

    train_prog = fluid.default_main_program()
    val_program = fluid.default_main_program().clone(for_test=True)

145 146 147
    if not args.analysis:
        learning_rate, opt = create_optimizer(args)
        opt.minimize(avg_cost)
148

149
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
150 151 152
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
    train_reader = paddle.fluid.io.batch(
        train_reader, batch_size=args.batch_size, drop_last=True)
    train_loader = fluid.io.DataLoader.from_generator(
        feed_list=[image, label],
        capacity=512,
        use_double_buffer=True,
        iterable=True)
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    train_loader.set_sample_list_generator(train_reader, places)

    val_reader = paddle.fluid.io.batch(val_reader, batch_size=args.batch_size)
    valid_loader = fluid.io.DataLoader.from_generator(
        feed_list=[image, label],
        capacity=512,
        use_double_buffer=True,
        iterable=True)
    valid_loader.set_sample_list_generator(val_reader, places[0])

    if args.analysis:
        # get all activations names
        activates = [
            'pool2d_1.tmp_0', 'tmp_35', 'batch_norm_21.tmp_2', 'tmp_26',
            'elementwise_mul_5.tmp_0', 'pool2d_5.tmp_0',
            'elementwise_add_5.tmp_0', 'relu_2.tmp_0', 'pool2d_3.tmp_0',
            'conv2d_40.tmp_2', 'elementwise_mul_0.tmp_0', 'tmp_62',
            'elementwise_add_8.tmp_0', 'batch_norm_39.tmp_2', 'conv2d_32.tmp_2',
            'tmp_17', 'tmp_5', 'elementwise_add_9.tmp_0', 'pool2d_4.tmp_0',
            'relu_0.tmp_0', 'tmp_53', 'relu_3.tmp_0', 'elementwise_add_4.tmp_0',
            'elementwise_add_6.tmp_0', 'tmp_11', 'conv2d_36.tmp_2',
            'relu_8.tmp_0', 'relu_5.tmp_0', 'pool2d_7.tmp_0',
            'elementwise_add_2.tmp_0', 'elementwise_add_7.tmp_0',
            'pool2d_2.tmp_0', 'tmp_47', 'batch_norm_12.tmp_2',
            'elementwise_mul_6.tmp_0', 'elementwise_mul_7.tmp_0',
            'pool2d_6.tmp_0', 'relu_6.tmp_0', 'elementwise_add_0.tmp_0',
            'elementwise_mul_3.tmp_0', 'conv2d_12.tmp_2',
            'elementwise_mul_2.tmp_0', 'tmp_8', 'tmp_2', 'conv2d_8.tmp_2',
            'elementwise_add_3.tmp_0', 'elementwise_mul_1.tmp_0',
            'pool2d_8.tmp_0', 'conv2d_28.tmp_2', 'image', 'conv2d_16.tmp_2',
            'batch_norm_33.tmp_2', 'relu_1.tmp_0', 'pool2d_0.tmp_0', 'tmp_20',
            'conv2d_44.tmp_2', 'relu_10.tmp_0', 'tmp_41', 'relu_4.tmp_0',
            'elementwise_add_1.tmp_0', 'tmp_23', 'batch_norm_6.tmp_2', 'tmp_29',
            'elementwise_mul_4.tmp_0', 'tmp_14'
        ]
        var_collector = VarCollector(train_prog, activates, use_ema=True)
        values = var_collector.abs_max_run(
            train_loader, exe, step=None, loss_name=avg_cost.name)
        np.save('pact_thres.npy', values)
        _logger.info(values)
        _logger.info("PACT threshold have been saved as pact_thres.npy")

        # Draw Histogram in 'dist_pdf/result.pdf'
        # var_collector.pdf(values)

        return

    values = defaultdict(lambda: 20)
    try:
        values = np.load("pact_thres.npy", allow_pickle=True).item()
        values.update(tmp)
        _logger.info("pact_thres.npy info loaded.")
    except:
        _logger.info(
            "cannot find pact_thres.npy. Set init PACT threshold as 20.")
    _logger.info(values)

    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }

240 241 242 243 244
    # 2. quantization transform programs (training aware)
    #    Make some quantization transforms in the graph before training and testing.
    #    According to the weight and activation quantization type, the graph will be added
    #    some fake quantize operators and fake dequantize operators.

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    def pact(x):
        helper = LayerHelper("pact", **locals())
        dtype = 'float32'
        init_thres = values[x.name.split('_tmp_input')[0]]
        u_param_attr = fluid.ParamAttr(
            name=x.name + '_pact',
            initializer=fluid.initializer.ConstantInitializer(value=init_thres),
            regularizer=fluid.regularizer.L2Decay(0.0001),
            learning_rate=1)
        u_param = helper.create_parameter(
            attr=u_param_attr, shape=[1], dtype=dtype)

        part_a = fluid.layers.relu(fluid.layers.elementwise_sub(x, u_param))
        part_b = fluid.layers.relu(fluid.layers.elementwise_sub(-u_param, x))
        x = x - part_a + part_b
        return x

    def get_optimizer():
        return fluid.optimizer.MomentumOptimizer(args.lr, 0.9)

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    if args.use_pact:
        act_preprocess_func = pact
        optimizer_func = get_optimizer
        executor = exe
    else:
        act_preprocess_func = None
        optimizer_func = None
        executor = None

    val_program = quant_aware(
        val_program,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=True)
    compiled_train_prog = quant_aware(
        train_prog,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=False)

    assert os.path.exists(
        args.pretrained_model), "pretrained_model doesn't exist"

    if args.pretrained_model:

        def if_exist(var):
B
Bai Yifan 已提交
299
            return os.path.exists(os.path.join(args.pretrained_model, var.name))
300 301 302 303 304 305 306

        fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)

    def test(epoch, program):
        batch_id = 0
        acc_top1_ns = []
        acc_top5_ns = []
307
        for data in valid_loader():
308 309
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
310
                program, feed=data, fetch_list=[acc_top1.name, acc_top5.name])
311 312 313
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
314
                    "Eval epoch[{}] batch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}".
315 316 317 318 319 320 321
                    format(epoch, batch_id,
                           np.mean(acc_top1_n),
                           np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))
            batch_id += 1

322 323 324 325
        _logger.info(
            "Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}".format(
                epoch,
                np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
326 327 328 329 330
        return np.mean(np.array(acc_top1_ns))

    def train(epoch, compiled_train_prog):

        batch_id = 0
331
        for data in train_loader():
332
            start_time = time.time()
333
            lr_n, loss_n, acc_top1_n, acc_top5_n = exe.run(
334
                compiled_train_prog,
335 336 337 338 339
                feed=data,
                fetch_list=[
                    learning_rate.name, avg_cost.name, acc_top1.name,
                    acc_top5.name
                ])
340

341
            end_time = time.time()
342
            lr_n = np.mean(lr_n)
343 344 345 346 347
            loss_n = np.mean(loss_n)
            acc_top1_n = np.mean(acc_top1_n)
            acc_top5_n = np.mean(acc_top5_n)
            if batch_id % args.log_period == 0:
                _logger.info(
348 349 350
                    "epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}".
                    format(epoch, batch_id, lr_n, loss_n, acc_top1_n,
                           acc_top5_n, end_time - start_time))
351 352 353 354 355

            if args.use_pact and batch_id % 1000 == 0:
                threshold = {}
                for var in val_program.list_vars():
                    if 'pact' in var.name:
B
Bai Yifan 已提交
356 357
                        array = np.array(fluid.global_scope().find_var(var.name)
                                         .get_tensor())
358
                        threshold[var.name] = array[0]
359
                _logger.info(threshold)
360 361 362 363 364 365 366 367 368 369 370 371 372 373
            batch_id += 1

    build_strategy = fluid.BuildStrategy()
    build_strategy.enable_inplace = False
    build_strategy.fuse_all_reduce_ops = False
    exec_strategy = fluid.ExecutionStrategy()
    compiled_train_prog = compiled_train_prog.with_data_parallel(
        loss_name=avg_cost.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    # train loop
    best_acc1 = 0.0
    best_epoch = 0
374 375 376 377 378 379 380 381 382 383 384 385 386

    start_epoch = 0
    if args.checkpoint_dir is not None:
        ckpt_path = args.checkpoint_dir
        assert args.checkpoint_epoch is not None, "checkpoint_epoch must be set"
        start_epoch = args.checkpoint_epoch
        fluid.io.load_persistables(
            exe, dirname=args.checkpoint_dir, main_program=val_program)
        start_step = start_epoch * int(
            math.ceil(float(args.total_images) / args.batch_size))
        v = fluid.global_scope().find_var('@LR_DECAY_COUNTER@').get_tensor()
        v.set(np.array([start_step]).astype(np.float32), place)

387 388
    best_eval_acc1 = 0
    best_acc1_epoch = 0
389
    for i in range(start_epoch, args.num_epochs):
390 391
        train(i, compiled_train_prog)
        acc1 = test(i, val_program)
392 393 394 395 396
        if acc1 > best_eval_acc1:
            best_eval_acc1 = acc1
            best_acc1_epoch = i
        _logger.info("Best Validation Acc1: {:.6f}, at epoch {}".format(
            best_eval_acc1, best_acc1_epoch))
397 398
        fluid.io.save_persistables(
            exe,
399
            dirname=os.path.join(args.output_dir, str(i)),
400 401 402 403 404 405
            main_program=val_program)
        if acc1 > best_acc1:
            best_acc1 = acc1
            best_epoch = i
            fluid.io.save_persistables(
                exe,
406
                dirname=os.path.join(args.output_dir, 'best_model'),
407
                main_program=val_program)
408

409
    if os.path.exists(os.path.join(args.output_dir, 'best_model')):
410 411
        fluid.io.load_persistables(
            exe,
412
            dirname=os.path.join(args.output_dir, 'best_model'),
413
            main_program=val_program)
414

415 416 417 418 419 420
    # 3. Freeze the graph after training by adjusting the quantize
    #    operators' order for the inference.
    #    The dtype of float_program's weights is float32, but in int8 range.
    float_program, int8_program = convert(val_program, place, quant_config, \
                                                        scope=None, \
                                                        save_int8=True)
421
    _logger.info("eval best_model after convert")
422
    final_acc1 = test(best_epoch, float_program)
423 424
    _logger.info("final acc:{}".format(final_acc1))

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    # 4. Save inference model
    model_path = os.path.join(quantization_model_save_dir, args.model,
                              'act_' + quant_config['activation_quantize_type']
                              + '_w_' + quant_config['weight_quantize_type'])
    float_path = os.path.join(model_path, 'float')
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

    fluid.io.save_inference_model(
        dirname=float_path,
        feeded_var_names=[image.name],
        target_vars=[out],
        executor=exe,
        main_program=float_program,
        model_filename=float_path + '/model',
        params_filename=float_path + '/params')


def main():
444
    paddle.enable_static()
445 446 447 448 449 450 451
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()