train.py 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
10 11
from collections import defaultdict

B
Bai Yifan 已提交
12 13 14
sys.path.append(os.path.dirname("__file__"))
sys.path.append(
    os.path.join(os.path.dirname("__file__"), os.path.pardir, os.path.pardir))
15
from paddleslim.common import get_logger, VarCollector
16 17 18 19
from paddleslim.analysis import flops
from paddleslim.quant import quant_aware, quant_post, convert
import models
from utility import add_arguments, print_arguments
20
from paddle.fluid.layer_helper import LayerHelper
21 22 23 24 25 26 27
quantization_model_save_dir = './quantization_models/'

_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
28
add_arg('batch_size',       int,  128,
29 30 31
        "Minibatch size.")
add_arg('use_gpu',          bool, True,
        "Whether to use GPU or not.")
32
add_arg('model',            str,  "MobileNetV3_large_x1_0",
33
        "The target model.")
34
add_arg('pretrained_model', str,  "./pretrain/MobileNetV3_large_x1_0_ssld_pretrained",
35
        "Whether to use pretrained model.")
36
add_arg('lr',               float,  0.001,
37 38 39
        "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy',      str,  "piecewise_decay",
        "The learning rate decay strategy.")
40
add_arg('l2_decay',         float,  1e-5,
41 42 43
        "The l2_decay parameter.")
add_arg('momentum_rate',    float,  0.9,
        "The value of momentum_rate.")
44
add_arg('num_epochs',       int,  30,
45 46 47 48
        "The number of total epochs.")
add_arg('total_images',     int,  1281167,
        "The number of total training images.")
parser.add_argument('--step_epochs', nargs='+', type=int,
49
        default=[20],
50 51 52 53 54 55 56
        help="piecewise decay step")
add_arg('config_file',      str, None,
        "The config file for compression with yaml format.")
add_arg('data',             str, "imagenet",
        "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period',       int, 10,
        "Log period in batches.")
57 58 59 60 61 62
add_arg('checkpoint_dir',         str, None,
        "checkpoint dir")
add_arg('checkpoint_epoch',         int, None,
        "checkpoint epoch")
add_arg('output_dir',         str, "output/MobileNetV3_large_x1_0",
        "model save dir")
63 64
add_arg('use_pact',          bool, True,
        "Whether to use PACT or not.")
65 66
add_arg('analysis',          bool, False,
        "Whether analysis variables distribution.")
67 68 69 70 71 72 73

# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def piecewise_decay(args):
B
Bai Yifan 已提交
74 75
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
76 77
    step = int(
        math.ceil(float(args.total_images) / (args.batch_size * len(places))))
78 79
    bd = [step * e for e in args.step_epochs]
    lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
B
Bai Yifan 已提交
80 81 82
    learning_rate = paddle.optimizer.lr.PiecewiseDecay(
        boundaries=bd, values=lr, verbose=False)
    optimizer = paddle.optimizer.Momentum(
83 84
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
B
Bai Yifan 已提交
85
        weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
86
    return learning_rate, optimizer
87 88 89


def cosine_decay(args):
B
Bai Yifan 已提交
90 91
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
92 93
    step = int(
        math.ceil(float(args.total_images) / (args.batch_size * len(places))))
B
Bai Yifan 已提交
94 95 96
    learning_rate = paddle.optimizer.lr.CosineAnnealingDecay(
        learning_rate=args.lr, T_max=step * args.num_epochs, verbose=False)
    optimizer = paddle.optimizer.Momentum(
97 98
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
B
Bai Yifan 已提交
99
        weight_decay=paddle.regularizer.L2Decay(args.l2_decay))
100
    return learning_rate, optimizer
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


def create_optimizer(args):
    if args.lr_strategy == "piecewise_decay":
        return piecewise_decay(args)
    elif args.lr_strategy == "cosine_decay":
        return cosine_decay(args)


def compress(args):

    if args.data == "mnist":
        import paddle.dataset.mnist as reader
        train_reader = reader.train()
        val_reader = reader.test()
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_reader = reader.train()
        val_reader = reader.val()
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))

    image_shape = [int(m) for m in image_shape.split(",")]
B
Bai Yifan 已提交
128 129
    assert args.model in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
B
Bai Yifan 已提交
130 131
    image = paddle.static.data(
        name='image', shape=[None] + image_shape, dtype='float32')
132 133
    if args.use_pact:
        image.stop_gradient = False
B
Bai Yifan 已提交
134
    label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
135 136 137
    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
B
Bai Yifan 已提交
138 139 140 141
    cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
    avg_cost = paddle.mean(x=cost)
    acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
    acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
142

B
Bai Yifan 已提交
143 144
    train_prog = paddle.static.default_main_program()
    val_program = paddle.static.default_main_program().clone(for_test=True)
145

146 147 148
    if not args.analysis:
        learning_rate, opt = create_optimizer(args)
        opt.minimize(avg_cost)
149

B
Bai Yifan 已提交
150 151 152
    place = paddle.CUDAPlace(0) if args.use_gpu else paddle.CPUPlace()
    exe = paddle.static.Executor(place)
    exe.run(paddle.static.default_startup_program())
153

B
Bai Yifan 已提交
154
    train_reader = paddle.batch(
155
        train_reader, batch_size=args.batch_size, drop_last=True)
B
Bai Yifan 已提交
156
    train_loader = paddle.io.DataLoader.from_generator(
157 158 159 160
        feed_list=[image, label],
        capacity=512,
        use_double_buffer=True,
        iterable=True)
B
Bai Yifan 已提交
161 162
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
163 164
    train_loader.set_sample_list_generator(train_reader, places)

B
Bai Yifan 已提交
165 166
    val_reader = paddle.batch(val_reader, batch_size=args.batch_size)
    valid_loader = paddle.io.DataLoader.from_generator(
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        feed_list=[image, label],
        capacity=512,
        use_double_buffer=True,
        iterable=True)
    valid_loader.set_sample_list_generator(val_reader, places[0])

    if args.analysis:
        # get all activations names
        activates = [
            'pool2d_1.tmp_0', 'tmp_35', 'batch_norm_21.tmp_2', 'tmp_26',
            'elementwise_mul_5.tmp_0', 'pool2d_5.tmp_0',
            'elementwise_add_5.tmp_0', 'relu_2.tmp_0', 'pool2d_3.tmp_0',
            'conv2d_40.tmp_2', 'elementwise_mul_0.tmp_0', 'tmp_62',
            'elementwise_add_8.tmp_0', 'batch_norm_39.tmp_2', 'conv2d_32.tmp_2',
            'tmp_17', 'tmp_5', 'elementwise_add_9.tmp_0', 'pool2d_4.tmp_0',
            'relu_0.tmp_0', 'tmp_53', 'relu_3.tmp_0', 'elementwise_add_4.tmp_0',
            'elementwise_add_6.tmp_0', 'tmp_11', 'conv2d_36.tmp_2',
            'relu_8.tmp_0', 'relu_5.tmp_0', 'pool2d_7.tmp_0',
            'elementwise_add_2.tmp_0', 'elementwise_add_7.tmp_0',
            'pool2d_2.tmp_0', 'tmp_47', 'batch_norm_12.tmp_2',
            'elementwise_mul_6.tmp_0', 'elementwise_mul_7.tmp_0',
            'pool2d_6.tmp_0', 'relu_6.tmp_0', 'elementwise_add_0.tmp_0',
            'elementwise_mul_3.tmp_0', 'conv2d_12.tmp_2',
            'elementwise_mul_2.tmp_0', 'tmp_8', 'tmp_2', 'conv2d_8.tmp_2',
            'elementwise_add_3.tmp_0', 'elementwise_mul_1.tmp_0',
            'pool2d_8.tmp_0', 'conv2d_28.tmp_2', 'image', 'conv2d_16.tmp_2',
            'batch_norm_33.tmp_2', 'relu_1.tmp_0', 'pool2d_0.tmp_0', 'tmp_20',
            'conv2d_44.tmp_2', 'relu_10.tmp_0', 'tmp_41', 'relu_4.tmp_0',
            'elementwise_add_1.tmp_0', 'tmp_23', 'batch_norm_6.tmp_2', 'tmp_29',
            'elementwise_mul_4.tmp_0', 'tmp_14'
        ]
        var_collector = VarCollector(train_prog, activates, use_ema=True)
        values = var_collector.abs_max_run(
            train_loader, exe, step=None, loss_name=avg_cost.name)
        np.save('pact_thres.npy', values)
        _logger.info(values)
        _logger.info("PACT threshold have been saved as pact_thres.npy")

        # Draw Histogram in 'dist_pdf/result.pdf'
        # var_collector.pdf(values)

        return

    values = defaultdict(lambda: 20)
    try:
        values = np.load("pact_thres.npy", allow_pickle=True).item()
        values.update(tmp)
        _logger.info("pact_thres.npy info loaded.")
    except:
        _logger.info(
            "cannot find pact_thres.npy. Set init PACT threshold as 20.")
    _logger.info(values)

    # 1. quantization configs
    quant_config = {
        # weight quantize type, default is 'channel_wise_abs_max'
        'weight_quantize_type': 'channel_wise_abs_max',
        # activation quantize type, default is 'moving_average_abs_max'
        'activation_quantize_type': 'moving_average_abs_max',
        # weight quantize bit num, default is 8
        'weight_bits': 8,
        # activation quantize bit num, default is 8
        'activation_bits': 8,
        # ops of name_scope in not_quant_pattern list, will not be quantized
        'not_quant_pattern': ['skip_quant'],
        # ops of type in quantize_op_types, will be quantized
        'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'],
        # data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
        'dtype': 'int8',
        # window size for 'range_abs_max' quantization. defaulf is 10000
        'window_size': 10000,
        # The decay coefficient of moving average, default is 0.9
        'moving_rate': 0.9,
    }

242 243 244 245 246
    # 2. quantization transform programs (training aware)
    #    Make some quantization transforms in the graph before training and testing.
    #    According to the weight and activation quantization type, the graph will be added
    #    some fake quantize operators and fake dequantize operators.

247 248 249 250
    def pact(x):
        helper = LayerHelper("pact", **locals())
        dtype = 'float32'
        init_thres = values[x.name.split('_tmp_input')[0]]
B
Bai Yifan 已提交
251
        u_param_attr = paddle.ParamAttr(
252
            name=x.name + '_pact',
B
Bai Yifan 已提交
253 254
            initializer=paddle.nn.initializer.Constant(value=init_thres),
            regularizer=paddle.regularizer.L2Decay(0.0001),
255 256 257 258
            learning_rate=1)
        u_param = helper.create_parameter(
            attr=u_param_attr, shape=[1], dtype=dtype)

B
Bai Yifan 已提交
259 260
        part_a = paddle.nn.functional.relu(x - u_param)
        part_b = paddle.nn.functional.relu(-u_param - x)
261 262 263 264
        x = x - part_a + part_b
        return x

    def get_optimizer():
B
Bai Yifan 已提交
265
        return paddle.optimizer.Momentum(args.lr, 0.9)
266

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    if args.use_pact:
        act_preprocess_func = pact
        optimizer_func = get_optimizer
        executor = exe
    else:
        act_preprocess_func = None
        optimizer_func = None
        executor = None

    val_program = quant_aware(
        val_program,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=True)
    compiled_train_prog = quant_aware(
        train_prog,
        place,
        quant_config,
        scope=None,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=executor,
        for_test=False)

    assert os.path.exists(
        args.pretrained_model), "pretrained_model doesn't exist"

    if args.pretrained_model:
B
Bai Yifan 已提交
299
        paddle.static.load(train_prog, args.pretrained_model, exe)
300 301 302 303 304

    def test(epoch, program):
        batch_id = 0
        acc_top1_ns = []
        acc_top5_ns = []
305
        for data in valid_loader():
306 307
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
308
                program, feed=data, fetch_list=[acc_top1.name, acc_top5.name])
309 310 311
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
312
                    "Eval epoch[{}] batch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}".
313 314 315 316 317 318 319
                    format(epoch, batch_id,
                           np.mean(acc_top1_n),
                           np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))
            batch_id += 1

320 321 322 323
        _logger.info(
            "Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}".format(
                epoch,
                np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
324 325
        return np.mean(np.array(acc_top1_ns))

B
Bai Yifan 已提交
326
    def train(epoch, compiled_train_prog, lr):
327 328

        batch_id = 0
329
        for data in train_loader():
330
            start_time = time.time()
B
Bai Yifan 已提交
331
            loss_n, acc_top1_n, acc_top5_n = exe.run(
332
                compiled_train_prog,
333
                feed=data,
B
Bai Yifan 已提交
334
                fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
335

336 337 338 339 340 341
            end_time = time.time()
            loss_n = np.mean(loss_n)
            acc_top1_n = np.mean(acc_top1_n)
            acc_top5_n = np.mean(acc_top5_n)
            if batch_id % args.log_period == 0:
                _logger.info(
342
                    "epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; acc_top1: {:.6f}; acc_top5: {:.6f}; time: {:.3f}".
B
Bai Yifan 已提交
343 344
                    format(epoch, batch_id,
                           learning_rate.get_lr(), loss_n, acc_top1_n,
345
                           acc_top5_n, end_time - start_time))
346 347 348 349 350

            if args.use_pact and batch_id % 1000 == 0:
                threshold = {}
                for var in val_program.list_vars():
                    if 'pact' in var.name:
B
Bai Yifan 已提交
351 352
                        array = np.array(paddle.static.global_scope().find_var(
                            var.name).get_tensor())
353
                        threshold[var.name] = array[0]
354
                _logger.info(threshold)
355
            batch_id += 1
B
Bai Yifan 已提交
356
            lr.step()
357

B
Bai Yifan 已提交
358
    build_strategy = paddle.static.BuildStrategy()
359 360
    build_strategy.enable_inplace = False
    build_strategy.fuse_all_reduce_ops = False
B
Bai Yifan 已提交
361
    exec_strategy = paddle.static.ExecutionStrategy()
362 363 364 365 366 367 368 369
    compiled_train_prog = compiled_train_prog.with_data_parallel(
        loss_name=avg_cost.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    # train loop
    best_acc1 = 0.0
    best_epoch = 0
370 371 372 373 374 375

    start_epoch = 0
    if args.checkpoint_dir is not None:
        ckpt_path = args.checkpoint_dir
        assert args.checkpoint_epoch is not None, "checkpoint_epoch must be set"
        start_epoch = args.checkpoint_epoch
B
Bai Yifan 已提交
376
        paddle.static.load_vars(
377 378 379
            exe, dirname=args.checkpoint_dir, main_program=val_program)
        start_step = start_epoch * int(
            math.ceil(float(args.total_images) / args.batch_size))
B
Bai Yifan 已提交
380 381
        v = paddle.static.global_scope().find_var(
            '@LR_DECAY_COUNTER@').get_tensor()
382 383
        v.set(np.array([start_step]).astype(np.float32), place)

384 385
    best_eval_acc1 = 0
    best_acc1_epoch = 0
386
    for i in range(start_epoch, args.num_epochs):
B
Bai Yifan 已提交
387
        train(i, compiled_train_prog, learning_rate)
388
        acc1 = test(i, val_program)
389 390 391 392 393
        if acc1 > best_eval_acc1:
            best_eval_acc1 = acc1
            best_acc1_epoch = i
        _logger.info("Best Validation Acc1: {:.6f}, at epoch {}".format(
            best_eval_acc1, best_acc1_epoch))
B
Bai Yifan 已提交
394
        paddle.static.save(
395
            exe,
396
            dirname=os.path.join(args.output_dir, str(i)),
397 398 399 400
            main_program=val_program)
        if acc1 > best_acc1:
            best_acc1 = acc1
            best_epoch = i
B
Bai Yifan 已提交
401
            paddle.static.save(
402
                exe,
403
                dirname=os.path.join(args.output_dir, 'best_model'),
404
                main_program=val_program)
405

406
    if os.path.exists(os.path.join(args.output_dir, 'best_model')):
B
Bai Yifan 已提交
407
        paddle.static.load(
408
            exe,
409
            dirname=os.path.join(args.output_dir, 'best_model'),
410
            main_program=val_program)
411

412 413 414 415 416 417
    # 3. Freeze the graph after training by adjusting the quantize
    #    operators' order for the inference.
    #    The dtype of float_program's weights is float32, but in int8 range.
    float_program, int8_program = convert(val_program, place, quant_config, \
                                                        scope=None, \
                                                        save_int8=True)
418
    _logger.info("eval best_model after convert")
419
    final_acc1 = test(best_epoch, float_program)
420 421
    _logger.info("final acc:{}".format(final_acc1))

422 423 424 425 426 427 428 429
    # 4. Save inference model
    model_path = os.path.join(quantization_model_save_dir, args.model,
                              'act_' + quant_config['activation_quantize_type']
                              + '_w_' + quant_config['weight_quantize_type'])
    float_path = os.path.join(model_path, 'float')
    if not os.path.isdir(model_path):
        os.makedirs(model_path)

B
Bai Yifan 已提交
430
    paddle.static.save_inference_model(
431 432 433 434 435 436 437 438 439 440
        dirname=float_path,
        feeded_var_names=[image.name],
        target_vars=[out],
        executor=exe,
        main_program=float_program,
        model_filename=float_path + '/model',
        params_filename=float_path + '/params')


def main():
441
    paddle.enable_static()
442 443 444 445 446 447 448
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()