sa_nas_mobilenetv2.py 11.4 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11
import sys
sys.path.append('..')
import numpy as np
import argparse
import ast
import time
import argparse
import ast
import logging
import paddle
import paddle.fluid as fluid
C
ceci3 已提交
12
from paddle.fluid.param_attr import ParamAttr
C
ceci3 已提交
13 14 15 16 17 18 19 20 21 22
from paddleslim.analysis import flops
from paddleslim.nas import SANAS
from paddleslim.common import get_logger
from optimizer import create_optimizer
import imagenet_reader

_logger = get_logger(__name__, level=logging.INFO)


def create_data_loader(image_shape):
C
update  
ceci3 已提交
23
    data_shape = [None] + image_shape
C
ceci3 已提交
24
    data = fluid.data(name='data', shape=data_shape, dtype='float32')
C
update  
ceci3 已提交
25
    label = fluid.data(name='label', shape=[None, 1], dtype='int64')
C
ceci3 已提交
26 27 28 29 30 31 32 33
    data_loader = fluid.io.DataLoader.from_generator(
        feed_list=[data, label],
        capacity=1024,
        use_double_buffer=True,
        iterable=True)
    return data_loader, data, label


C
ceci3 已提交
34 35 36 37 38 39 40
def build_program(main_program,
                  startup_program,
                  image_shape,
                  archs,
                  args,
                  is_test=False):
    with fluid.program_guard(main_program, startup_program):
C
ceci3 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
        with fluid.unique_name.guard():
            data_loader, data, label = create_data_loader(image_shape)
            output = archs(data)
            output = fluid.layers.fc(input=output, size=args.class_dim)

            softmax_out = fluid.layers.softmax(input=output, use_cudnn=False)
            cost = fluid.layers.cross_entropy(input=softmax_out, label=label)
            avg_cost = fluid.layers.mean(cost)
            acc_top1 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(
                input=softmax_out, label=label, k=5)

            if is_test == False:
                optimizer = create_optimizer(args)
                optimizer.minimize(avg_cost)
C
ceci3 已提交
57 58 59
    return data_loader, avg_cost, acc_top1, acc_top5


C
ceci3 已提交
60 61 62 63 64
def search_mobilenetv2(config, args, image_size, is_server=True):
    if is_server:
        ### start a server and a client
        sa_nas = SANAS(
            config,
C
ceci3 已提交
65
            server_addr=(args.server_address, args.port),
C
ceci3 已提交
66 67 68 69 70 71
            search_steps=args.search_steps,
            is_server=True)
    else:
        ### start a client
        sa_nas = SANAS(
            config,
C
ceci3 已提交
72
            server_addr=(args.server_address, args.port),
C
ceci3 已提交
73 74
            search_steps=args.search_steps,
            is_server=False)
C
ceci3 已提交
75 76 77 78 79 80 81 82

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = sa_nas.next_archs()[0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
C
ceci3 已提交
83 84 85 86 87
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        current_flops = flops(train_program)
        print('step: {}, current_flops: {}'.format(step, current_flops))
C
ceci3 已提交
88
        if current_flops > int(321208544):
C
ceci3 已提交
89 90 91 92 93 94 95 96 97 98
            continue

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)
C
ceci3 已提交
99 100 101 102 103 104

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
105
            train_reader = paddle.fluid.io.batch(
C
ceci3 已提交
106 107 108 109 110
                paddle.reader.shuffle(
                    paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                batch_size=args.batch_size,
                drop_last=True)

111
            test_reader = paddle.fluid.io.batch(
C
ceci3 已提交
112 113 114 115
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
116
            train_reader = paddle.fluid.io.batch(
C
ceci3 已提交
117 118 119
                imagenet_reader.train(),
                batch_size=args.batch_size,
                drop_last=True)
120
            test_reader = paddle.fluid.io.batch(
C
ceci3 已提交
121 122 123 124 125 126 127
                imagenet_reader.val(),
                batch_size=args.batch_size,
                drop_last=False)

        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
C
ceci3 已提交
128 129
        test_loader.set_sample_list_generator(test_reader, places=place)

C
ceci3 已提交
130 131 132 133
        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(
                loss_name=avg_cost.name, build_strategy=build_strategy)
C
ceci3 已提交
134
        for epoch_id in range(args.retain_epoch):
C
ceci3 已提交
135 136 137 138 139 140 141 142 143 144 145
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                        format(step, epoch_id, batch_id, outs[0], batch_time))
C
ceci3 已提交
146

C
ceci3 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159
        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
C
ceci3 已提交
160 161
                format(step, batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))
C
ceci3 已提交
162 163

        finally_reward = np.mean(np.array(reward), axis=0)
C
ceci3 已提交
164
        _logger.info(
C
ceci3 已提交
165
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
C
ceci3 已提交
166
                finally_reward[0], finally_reward[1], finally_reward[2]))
C
ceci3 已提交
167

C
ceci3 已提交
168
        sa_nas.reward(float(finally_reward[1]))
C
ceci3 已提交
169 170


C
update  
ceci3 已提交
171 172 173
def test_search_result(tokens, image_size, args, config):
    sa_nas = SANAS(
        config,
C
ceci3 已提交
174
        server_addr=(args.server_address, args.port),
C
update  
ceci3 已提交
175 176 177 178 179
        search_steps=args.search_steps,
        is_server=True)

    image_shape = [3, image_size, image_size]

C
ceci3 已提交
180
    archs = sa_nas.tokens2arch(tokens)[0]
C
update  
ceci3 已提交
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    train_program = fluid.Program()
    test_program = fluid.Program()
    startup_program = fluid.Program()
    train_loader, avg_cost, acc_top1, acc_top5 = build_program(
        train_program, startup_program, image_shape, archs, args)

    current_flops = flops(train_program)
    print('current_flops: {}'.format(current_flops))
    test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
        test_program, startup_program, image_shape, archs, args, is_test=True)

    test_program = test_program.clone(for_test=True)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(startup_program)

    if args.data == 'cifar10':
200
        train_reader = paddle.fluid.io.batch(
C
update  
ceci3 已提交
201 202 203 204 205
            paddle.reader.shuffle(
                paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
            batch_size=args.batch_size,
            drop_last=True)

206
        test_reader = paddle.fluid.io.batch(
C
update  
ceci3 已提交
207 208 209 210
            paddle.dataset.cifar.test10(cycle=False),
            batch_size=args.batch_size,
            drop_last=False)
    elif args.data == 'imagenet':
211
        train_reader = paddle.fluid.io.batch(
C
update  
ceci3 已提交
212 213 214
            imagenet_reader.train(),
            batch_size=args.batch_size,
            drop_last=True)
215
        test_reader = paddle.fluid.io.batch(
C
update  
ceci3 已提交
216 217 218 219 220 221 222 223 224 225 226
            imagenet_reader.val(), batch_size=args.batch_size, drop_last=False)

    train_loader.set_sample_list_generator(
        train_reader,
        places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
    test_loader.set_sample_list_generator(test_reader, places=place)

    build_strategy = fluid.BuildStrategy()
    train_compiled_program = fluid.CompiledProgram(
        train_program).with_data_parallel(
            loss_name=avg_cost.name, build_strategy=build_strategy)
C
ceci3 已提交
227
    for epoch_id in range(args.retain_epoch):
C
update  
ceci3 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
        for batch_id, data in enumerate(train_loader()):
            fetches = [avg_cost.name]
            s_time = time.time()
            outs = exe.run(train_compiled_program,
                           feed=data,
                           fetch_list=fetches)[0]
            batch_time = time.time() - s_time
            if batch_id % 10 == 0:
                _logger.info(
                    'TRAIN: epoch: {}, batch: {}, cost: {}, batch_time: {}ms'.
                    format(epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'.
                format(batch_id, batch_reward[0], batch_reward[1],
                       batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))


C
ceci3 已提交
262 263 264 265 266 267 268 269 270 271 272
if __name__ == '__main__':

    parser = argparse.ArgumentParser(
        description='SA NAS MobileNetV2 cifar10 argparase')
    parser.add_argument(
        '--use_gpu',
        type=ast.literal_eval,
        default=True,
        help='Whether to use GPU in train/test model.')
    parser.add_argument(
        '--batch_size', type=int, default=256, help='batch size.')
C
update  
ceci3 已提交
273
    parser.add_argument(
C
ceci3 已提交
274
        '--class_dim', type=int, default=10, help='classify number.')
C
ceci3 已提交
275 276 277 278 279 280
    parser.add_argument(
        '--data',
        type=str,
        default='cifar10',
        choices=['cifar10', 'imagenet'],
        help='server address.')
C
ceci3 已提交
281 282 283 284 285
    parser.add_argument(
        '--is_server',
        type=ast.literal_eval,
        default=True,
        help='Whether to start a server.')
C
ceci3 已提交
286 287 288 289 290
    parser.add_argument(
        '--search_steps',
        type=int,
        default=100,
        help='controller server number.')
C
ceci3 已提交
291 292 293 294 295
    parser.add_argument(
        '--server_address', type=str, default="", help='server ip.')
    parser.add_argument('--port', type=int, default=8881, help='server port')
    parser.add_argument(
        '--retain_epoch', type=int, default=5, help='epoch for each token.')
C
ceci3 已提交
296 297 298 299 300 301 302 303 304 305 306
    parser.add_argument('--lr', type=float, default=0.1, help='learning rate.')
    args = parser.parse_args()
    print(args)

    if args.data == 'cifar10':
        image_size = 32
        block_num = 3
    elif args.data == 'imagenet':
        image_size = 224
        block_num = 6
    else:
C
update  
ceci3 已提交
307
        raise NotImplementedError(
C
ceci3 已提交
308 309 310
            'data must in [cifar10, imagenet], but received: {}'.format(
                args.data))

C
ceci3 已提交
311
    config = [('MobileNetV2Space')]
C
ceci3 已提交
312

C
ceci3 已提交
313
    search_mobilenetv2(config, args, image_size, is_server=args.is_server)