mobilenetv2.py 10.8 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
C
ceci3 已提交
20 21
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
22
from .search_space_base import SearchSpaceBase
C
ceci3 已提交
23
from .base_layer import conv_bn_layer
24
from .search_space_registry import SEARCHSPACE
C
ceci3 已提交
25

26 27
__all__ = ["MobileNetV2Space"]

28 29

@SEARCHSPACE.register
C
ceci3 已提交
30
class MobileNetV2Space(SearchSpaceBase):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def __init__(self,
                 input_size,
                 output_size,
                 block_num,
                 scale=1.0,
                 class_dim=1000):
        super(MobileNetV2Space, self).__init__(input_size, output_size,
                                               block_num)
        self.head_num = np.array([3, 4, 8, 12, 16, 24, 32])  #7
        self.filter_num1 = np.array([3, 4, 8, 12, 16, 24, 32, 48])  #8
        self.filter_num2 = np.array([8, 12, 16, 24, 32, 48, 64, 80])  #8
        self.filter_num3 = np.array([16, 24, 32, 48, 64, 80, 96, 128])  #8
        self.filter_num4 = np.array(
            [24, 32, 48, 64, 80, 96, 128, 144, 160, 192])  #10
        self.filter_num5 = np.array(
            [32, 48, 64, 80, 96, 128, 144, 160, 192, 224])  #10
        self.filter_num6 = np.array(
            [64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384, 512])  #12
        self.k_size = np.array([3, 5])  #2
        self.multiply = np.array([1, 2, 3, 4, 6])  #5
        self.repeat = np.array([1, 2, 3, 4, 5, 6])  #6
        self.scale = scale
        self.class_dim = class_dim
C
ceci3 已提交
54 55 56

    def init_tokens(self):
        """
C
ceci3 已提交
57
        The initial token.
C
ceci3 已提交
58 59
        The first one is the index of the first layers' channel in self.head_num,
        each line in the following represent the index of the [expansion_factor, filter_num, repeat_num, kernel_size]
C
ceci3 已提交
60 61
        """
        # original MobileNetV2
W
wanghaoshuang 已提交
62
        # yapf: disable
C
ceci3 已提交
63
        init_token_base =  [4,          # 1, 16, 1
W
wanghaoshuang 已提交
64 65 66 67 68 69 70 71
                4, 5, 1, 0, # 6, 24, 1
                4, 5, 1, 0, # 6, 24, 2
                4, 4, 2, 0, # 6, 32, 3
                4, 4, 3, 0, # 6, 64, 4
                4, 5, 2, 0, # 6, 96, 3
                4, 7, 2, 0, # 6, 160, 3
                4, 9, 0, 0] # 6, 320, 1
        # yapf: enable
C
ceci3 已提交
72

W
wanghaoshuang 已提交
73
        if self.block_num < 5:
C
ceci3 已提交
74 75
            self.token_len = 1 + (self.block_num - 1) * 4
        else:
W
wanghaoshuang 已提交
76 77
            self.token_len = 1 + (self.block_num + 2 *
                                  (self.block_num - 5)) * 4
C
ceci3 已提交
78 79

        return init_token_base[:self.token_len]
C
ceci3 已提交
80 81 82

    def range_table(self):
        """
C
ceci3 已提交
83
        Get range table of current search space, constrains the range of tokens. 
C
ceci3 已提交
84 85
        """
        # head_num + 7 * [multiple(expansion_factor), filter_num, repeat, kernel_size]
W
wanghaoshuang 已提交
86
        # yapf: disable
C
ceci3 已提交
87
        range_table_base =  [7,
W
wanghaoshuang 已提交
88 89 90 91 92 93 94
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 8, 6, 2,
                5, 10, 6, 2,
                5, 10, 6, 2,
                5, 12, 6, 2]
W
wanghaoshuang 已提交
95
        range_table_base = list(np.array(range_table_base) - 1)
W
wanghaoshuang 已提交
96
        # yapf: enable
C
ceci3 已提交
97
        return range_table_base[:self.token_len]
C
ceci3 已提交
98 99 100

    def token2arch(self, tokens=None):
        """
C
ceci3 已提交
101
        return net_arch function
C
ceci3 已提交
102
        """
C
ceci3 已提交
103

104 105
        assert self.block_num < 7, 'block number must less than 7, but receive block number is {}'.format(
            self.block_num)
C
ceci3 已提交
106

C
ceci3 已提交
107 108
        if tokens is None:
            tokens = self.init_tokens()
C
ceci3 已提交
109

C
ceci3 已提交
110
        bottleneck_params_list = []
W
wanghaoshuang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        if self.block_num >= 1:
            bottleneck_params_list.append(
                (1, self.head_num[tokens[0]], 1, 1, 3))
        if self.block_num >= 2:
            bottleneck_params_list.append(
                (self.multiply[tokens[1]], self.filter_num1[tokens[2]],
                 self.repeat[tokens[3]], 2, self.k_size[tokens[4]]))
        if self.block_num >= 3:
            bottleneck_params_list.append(
                (self.multiply[tokens[5]], self.filter_num1[tokens[6]],
                 self.repeat[tokens[7]], 2, self.k_size[tokens[8]]))
        if self.block_num >= 4:
            bottleneck_params_list.append(
                (self.multiply[tokens[9]], self.filter_num2[tokens[10]],
                 self.repeat[tokens[11]], 2, self.k_size[tokens[12]]))
        if self.block_num >= 5:
            bottleneck_params_list.append(
                (self.multiply[tokens[13]], self.filter_num3[tokens[14]],
                 self.repeat[tokens[15]], 2, self.k_size[tokens[16]]))
            bottleneck_params_list.append(
C
ceci3 已提交
131
                (self.multiply[tokens[17]], self.filter_num4[tokens[18]],
W
wanghaoshuang 已提交
132 133 134 135 136 137 138 139 140
                 self.repeat[tokens[19]], 1, self.k_size[tokens[20]]))
        if self.block_num >= 6:
            bottleneck_params_list.append(
                (self.multiply[tokens[21]], self.filter_num5[tokens[22]],
                 self.repeat[tokens[23]], 2, self.k_size[tokens[24]]))
            bottleneck_params_list.append(
                (self.multiply[tokens[25]], self.filter_num6[tokens[26]],
                 self.repeat[tokens[27]], 1, self.k_size[tokens[28]]))

C
ceci3 已提交
141
        def net_arch(input):
C
ceci3 已提交
142
            #conv1
C
ceci3 已提交
143
            # all padding is 'SAME' in the conv2d, can compute the actual padding automatic. 
C
ceci3 已提交
144
            input = conv_bn_layer(
C
ceci3 已提交
145 146 147 148
                input,
                num_filters=int(32 * self.scale),
                filter_size=3,
                stride=2,
C
ceci3 已提交
149 150
                padding='SAME',
                act='relu6',
C
ceci3 已提交
151
                name='mobilenetv2_conv1_1')
C
ceci3 已提交
152 153 154 155 156 157 158

            # bottleneck sequences
            i = 1
            in_c = int(32 * self.scale)
            for layer_setting in bottleneck_params_list:
                t, c, n, s, k = layer_setting
                i += 1
C
ceci3 已提交
159
                input = self._invresi_blocks(
C
ceci3 已提交
160 161 162 163 164 165 166
                    input=input,
                    in_c=in_c,
                    t=t,
                    c=int(c * self.scale),
                    n=n,
                    s=s,
                    k=k,
C
ceci3 已提交
167
                    name='mobilenetv2_conv' + str(i))
C
ceci3 已提交
168
                in_c = int(c * self.scale)
C
ceci3 已提交
169 170 171

            # if output_size is 1, add fc layer in the end
            if self.output_size == 1:
C
ceci3 已提交
172
                print('NOTE: if output_size is 1, add fc layer in the end!!!')
173 174 175
                input = fluid.layers.fc(
                    input=input,
                    size=self.class_dim,
C
ceci3 已提交
176 177
                    param_attr=ParamAttr(name='mobilenetv2_fc_weights'),
                    bias_attr=ParamAttr(name='mobilenetv2_fc_offset'))
C
ceci3 已提交
178 179 180 181 182
            else:
                assert self.output_size == input.shape[2], \
                          ("output_size must EQUAL to input_size / (2^block_num)."
                          "But receive input_size={}, output_size={}, block_num={}".format(
                          self.input_size, self.output_size, self.block_num))
C
ceci3 已提交
183

C
ceci3 已提交
184 185
            return input

C
ceci3 已提交
186
        return net_arch
C
ceci3 已提交
187

C
ceci3 已提交
188
    def _shortcut(self, input, data_residual):
C
ceci3 已提交
189 190
        """Build shortcut layer.
        Args:
C
ceci3 已提交
191 192
            input(Variable): input.
            data_residual(Variable): residual layer.
C
ceci3 已提交
193 194 195 196 197
        Returns:
            Variable, layer output.
        """
        return fluid.layers.elementwise_add(input, data_residual)

C
ceci3 已提交
198
    def _inverted_residual_unit(self,
W
wanghaoshuang 已提交
199 200 201 202 203 204 205 206 207
                                input,
                                num_in_filter,
                                num_filters,
                                ifshortcut,
                                stride,
                                filter_size,
                                expansion_factor,
                                reduction_ratio=4,
                                name=None):
C
ceci3 已提交
208 209
        """Build inverted residual unit.
        Args:
C
ceci3 已提交
210 211 212 213 214 215
            input(Variable), input.
            num_in_filter(int), number of in filters.
            num_filters(int), number of filters.
            ifshortcut(bool), whether using shortcut.
            stride(int), stride.
            filter_size(int), filter size.
C
ceci3 已提交
216
            padding(str|int|list), padding.
C
ceci3 已提交
217 218
            expansion_factor(float), expansion factor.
            name(str), name.
C
ceci3 已提交
219 220 221 222
        Returns:
            Variable, layers output.
        """
        num_expfilter = int(round(num_in_filter * expansion_factor))
C
ceci3 已提交
223
        channel_expand = conv_bn_layer(
C
ceci3 已提交
224 225 226 227
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
C
ceci3 已提交
228
            padding='SAME',
C
ceci3 已提交
229
            num_groups=1,
C
ceci3 已提交
230
            act='relu6',
C
ceci3 已提交
231 232
            name=name + '_expand')

C
ceci3 已提交
233
        bottleneck_conv = conv_bn_layer(
C
ceci3 已提交
234 235 236 237
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
C
ceci3 已提交
238
            padding='SAME',
C
ceci3 已提交
239
            num_groups=num_expfilter,
C
ceci3 已提交
240
            act='relu6',
C
ceci3 已提交
241 242 243
            name=name + '_dwise',
            use_cudnn=False)

C
ceci3 已提交
244
        linear_out = conv_bn_layer(
C
ceci3 已提交
245 246 247 248
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
C
ceci3 已提交
249
            padding='SAME',
C
ceci3 已提交
250
            num_groups=1,
C
ceci3 已提交
251
            act=None,
C
ceci3 已提交
252 253 254
            name=name + '_linear')
        out = linear_out
        if ifshortcut:
C
ceci3 已提交
255
            out = self._shortcut(input=input, data_residual=out)
C
ceci3 已提交
256 257
        return out

C
ceci3 已提交
258
    def _invresi_blocks(self, input, in_c, t, c, n, s, k, name=None):
C
ceci3 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271
        """Build inverted residual blocks.
        Args:
            input: Variable, input.
            in_c: int, number of in filters.
            t: float, expansion factor.
            c: int, number of filters.
            n: int, number of layers.
            s: int, stride.
            k: int, filter size.
            name: str, name.
        Returns:
            Variable, layers output.
        """
C
ceci3 已提交
272
        first_block = self._inverted_residual_unit(
C
ceci3 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=k,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
C
ceci3 已提交
286
            last_residual_block = self._inverted_residual_unit(
C
ceci3 已提交
287 288 289 290 291 292 293 294 295
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=k,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block