train_search.py 9.7 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
__all__ = ['DARTSearch', 'count_parameters_in_MB']
B
Bai Yifan 已提交
20

21
import os
B
Bai Yifan 已提交
22 23 24 25 26 27
import logging
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from ...common import AvgrageMeter, get_logger
from .architect import Architect
28
from .get_genotype import get_genotype
B
Bai Yifan 已提交
29 30 31 32
logger = get_logger(__name__, level=logging.INFO)


def count_parameters_in_MB(all_params):
B
Bai Yifan 已提交
33 34 35 36 37 38 39 40
    """Count the parameters in the target list.
    Args:
        all_params(list): List of Variables.

    Returns:
        float: The total count(MB) of target parameter list.
    """

B
Bai Yifan 已提交
41 42 43 44 45 46 47 48
    parameters_number = 0
    for param in all_params:
        if param.trainable and 'aux' not in param.name:
            parameters_number += np.prod(param.shape)
    return parameters_number / 1e6


class DARTSearch(object):
B
Bai Yifan 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61
    """Used for Differentiable ARchiTecture Search(DARTS)

    Args:
        model(Paddle DyGraph model): Super Network for Search.
        train_reader(Python Generator): Generator to provide training data.
        valid_reader(Python Generator): Generator to provide validation  data.
        place(fluid.CPUPlace()|fluid.CUDAPlace(N)): This parameter represents the executor run on which device.
        learning_rate(float): Model parameter initial learning rate. Default: 0.025.
        batch_size(int): Minibatch size. Default: 64.
        arch_learning_rate(float): Learning rate for arch encoding. Default: 3e-4.
        unrolled(bool): Use one-step unrolled validation loss. Default: False.
        num_epochs(int): Epoch number. Default: 50.
        epochs_no_archopt(int): Epochs skip architecture optimize at begining. Default: 0.
B
Bai Yifan 已提交
62
        use_multiprocess(bool): Whether to use multiprocess in dataloader. Default: False.
B
Bai Yifan 已提交
63 64 65 66 67
        use_data_parallel(bool): Whether to use data parallel mode. Default: False.
        log_freq(int): Log frequency. Default: 50.

    """

B
Bai Yifan 已提交
68 69 70 71
    def __init__(self,
                 model,
                 train_reader,
                 valid_reader,
72
                 place,
B
Bai Yifan 已提交
73 74 75 76
                 learning_rate=0.025,
                 batchsize=64,
                 num_imgs=50000,
                 arch_learning_rate=3e-4,
77
                 unrolled=False,
B
Bai Yifan 已提交
78
                 num_epochs=50,
79
                 epochs_no_archopt=0,
B
Bai Yifan 已提交
80
                 use_multiprocess=False,
B
Bai Yifan 已提交
81
                 use_data_parallel=False,
82
                 save_dir='./',
B
Bai Yifan 已提交
83 84 85 86
                 log_freq=50):
        self.model = model
        self.train_reader = train_reader
        self.valid_reader = valid_reader
87
        self.place = place,
B
Bai Yifan 已提交
88 89 90 91 92
        self.learning_rate = learning_rate
        self.batchsize = batchsize
        self.num_imgs = num_imgs
        self.arch_learning_rate = arch_learning_rate
        self.unrolled = unrolled
93
        self.epochs_no_archopt = epochs_no_archopt
B
Bai Yifan 已提交
94
        self.num_epochs = num_epochs
B
Bai Yifan 已提交
95
        self.use_multiprocess = use_multiprocess
B
Bai Yifan 已提交
96
        self.use_data_parallel = use_data_parallel
97
        self.save_dir = save_dir
B
Bai Yifan 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        self.log_freq = log_freq

    def train_one_epoch(self, train_loader, valid_loader, architect, optimizer,
                        epoch):
        objs = AvgrageMeter()
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        self.model.train()

        for step_id, (
                train_data,
                valid_data) in enumerate(zip(train_loader(), valid_loader())):
            train_image, train_label = train_data
            valid_image, valid_label = valid_data
            train_image = to_variable(train_image)
            train_label = to_variable(train_label)
            train_label.stop_gradient = True
            valid_image = to_variable(valid_image)
            valid_label = to_variable(valid_label)
            valid_label.stop_gradient = True
            n = train_image.shape[0]

120
            if epoch >= self.epochs_no_archopt:
B
Bai Yifan 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                architect.step(train_image, train_label, valid_image,
                               valid_label)

            logits = self.model(train_image)
            prec1 = fluid.layers.accuracy(input=logits, label=train_label, k=1)
            prec5 = fluid.layers.accuracy(input=logits, label=train_label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, train_label))

            if self.use_data_parallel:
                loss = self.model.scale_loss(loss)
                loss.backward()
                self.model.apply_collective_grads()
            else:
                loss.backward()

137
            optimizer.minimize(loss)
B
Bai Yifan 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
            self.model.clear_gradients()

            objs.update(loss.numpy(), n)
            top1.update(prec1.numpy(), n)
            top5.update(prec5.numpy(), n)

            if step_id % self.log_freq == 0:
                logger.info(
                    "Train Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                    format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[
                        0]))
        return top1.avg[0]

    def valid_one_epoch(self, valid_loader, epoch):
        objs = AvgrageMeter()
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        self.model.eval()

        for step_id, (image, label) in enumerate(valid_loader):
            image = to_variable(image)
            label = to_variable(label)
            n = image.shape[0]
            logits = self.model(image)
            prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
            prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, label))
            objs.update(loss.numpy(), n)
            top1.update(prec1.numpy(), n)
            top5.update(prec5.numpy(), n)

            if step_id % self.log_freq == 0:
                logger.info(
                    "Valid Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                    format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[
                        0]))
        return top1.avg[0]

    def train(self):
B
Bai Yifan 已提交
178 179 180 181
        """Start search process.

        """

B
Bai Yifan 已提交
182 183 184 185 186 187
        model_parameters = [
            p for p in self.model.parameters()
            if p.name not in [a.name for a in self.model.arch_parameters()]
        ]
        logger.info("param size = {:.6f}MB".format(
            count_parameters_in_MB(model_parameters)))
188 189 190 191

        device_num = fluid.dygraph.parallel.Env().nranks
        step_per_epoch = int(self.num_imgs * 0.5 /
                             (self.batchsize * device_num))
B
Bai Yifan 已提交
192 193
        if self.unrolled:
            step_per_epoch *= 2
194

B
Bai Yifan 已提交
195 196
        learning_rate = fluid.dygraph.CosineDecay(
            self.learning_rate, step_per_epoch, self.num_epochs)
197 198

        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
B
Bai Yifan 已提交
199 200 201 202
        optimizer = fluid.optimizer.MomentumOptimizer(
            learning_rate,
            0.9,
            regularization=fluid.regularizer.L2DecayRegularizer(3e-4),
203 204
            parameter_list=model_parameters,
            grad_clip=clip)
B
Bai Yifan 已提交
205 206 207 208 209 210

        if self.use_data_parallel:
            self.train_reader = fluid.contrib.reader.distributed_batch_reader(
                self.train_reader)

        train_loader = fluid.io.DataLoader.from_generator(
B
Bai Yifan 已提交
211
            capacity=64,
B
Bai Yifan 已提交
212 213
            use_double_buffer=True,
            iterable=True,
214
            return_list=True,
B
Bai Yifan 已提交
215
            use_multiprocess=self.use_multiprocess)
B
Bai Yifan 已提交
216
        valid_loader = fluid.io.DataLoader.from_generator(
B
Bai Yifan 已提交
217
            capacity=64,
B
Bai Yifan 已提交
218 219
            use_double_buffer=True,
            iterable=True,
220
            return_list=True,
B
Bai Yifan 已提交
221
            use_multiprocess=self.use_multiprocess)
B
Bai Yifan 已提交
222 223 224 225

        train_loader.set_batch_generator(self.train_reader, places=self.place)
        valid_loader.set_batch_generator(self.valid_reader, places=self.place)

226 227 228 229 230 231 232 233 234
        base_model = self.model
        architect = Architect(
            model=self.model,
            eta=learning_rate,
            arch_learning_rate=self.arch_learning_rate,
            unrolled=self.unrolled,
            parallel=self.use_data_parallel)

        self.model = architect.get_model()
B
Bai Yifan 已提交
235 236 237 238 239 240 241 242

        save_parameters = (not self.use_data_parallel) or (
            self.use_data_parallel and
            fluid.dygraph.parallel.Env().local_rank == 0)

        for epoch in range(self.num_epochs):
            logger.info('Epoch {}, lr {:.6f}'.format(
                epoch, optimizer.current_step_lr()))
243 244

            genotype = get_genotype(base_model)
B
Bai Yifan 已提交
245 246 247 248 249 250 251 252 253 254 255
            logger.info('genotype = %s', genotype)

            train_top1 = self.train_one_epoch(train_loader, valid_loader,
                                              architect, optimizer, epoch)
            logger.info("Epoch {}, train_acc {:.6f}".format(epoch, train_top1))

            if epoch == self.num_epochs - 1:
                valid_top1 = self.valid_one_epoch(valid_loader, epoch)
                logger.info("Epoch {}, valid_acc {:.6f}".format(epoch,
                                                                valid_top1))
            if save_parameters:
256 257 258
                fluid.save_dygraph(
                    self.model.state_dict(),
                    os.path.join(self.save_dir, str(epoch), "params"))