train_search.py 9.6 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

19
__all__ = ['DARTSearch', 'count_parameters_in_MB']
B
Bai Yifan 已提交
20

21
import os
B
Bai Yifan 已提交
22 23 24 25 26 27
import logging
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from ...common import AvgrageMeter, get_logger
from .architect import Architect
28
from .get_genotype import get_genotype
B
Bai Yifan 已提交
29 30 31 32
logger = get_logger(__name__, level=logging.INFO)


def count_parameters_in_MB(all_params):
B
Bai Yifan 已提交
33 34 35 36 37 38 39 40
    """Count the parameters in the target list.
    Args:
        all_params(list): List of Variables.

    Returns:
        float: The total count(MB) of target parameter list.
    """

B
Bai Yifan 已提交
41 42 43 44 45 46 47 48
    parameters_number = 0
    for param in all_params:
        if param.trainable and 'aux' not in param.name:
            parameters_number += np.prod(param.shape)
    return parameters_number / 1e6


class DARTSearch(object):
B
Bai Yifan 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    """Used for Differentiable ARchiTecture Search(DARTS)

    Args:
        model(Paddle DyGraph model): Super Network for Search.
        train_reader(Python Generator): Generator to provide training data.
        valid_reader(Python Generator): Generator to provide validation  data.
        place(fluid.CPUPlace()|fluid.CUDAPlace(N)): This parameter represents the executor run on which device.
        learning_rate(float): Model parameter initial learning rate. Default: 0.025.
        batch_size(int): Minibatch size. Default: 64.
        arch_learning_rate(float): Learning rate for arch encoding. Default: 3e-4.
        unrolled(bool): Use one-step unrolled validation loss. Default: False.
        num_epochs(int): Epoch number. Default: 50.
        epochs_no_archopt(int): Epochs skip architecture optimize at begining. Default: 0.
        use_data_parallel(bool): Whether to use data parallel mode. Default: False.
        log_freq(int): Log frequency. Default: 50.

    """

B
Bai Yifan 已提交
67 68 69 70
    def __init__(self,
                 model,
                 train_reader,
                 valid_reader,
71
                 place,
B
Bai Yifan 已提交
72 73 74 75
                 learning_rate=0.025,
                 batchsize=64,
                 num_imgs=50000,
                 arch_learning_rate=3e-4,
76
                 unrolled=False,
B
Bai Yifan 已提交
77
                 num_epochs=50,
78
                 epochs_no_archopt=0,
B
Bai Yifan 已提交
79
                 use_data_parallel=False,
80
                 save_dir='./',
B
Bai Yifan 已提交
81 82 83 84
                 log_freq=50):
        self.model = model
        self.train_reader = train_reader
        self.valid_reader = valid_reader
85
        self.place = place,
B
Bai Yifan 已提交
86 87 88 89 90
        self.learning_rate = learning_rate
        self.batchsize = batchsize
        self.num_imgs = num_imgs
        self.arch_learning_rate = arch_learning_rate
        self.unrolled = unrolled
91
        self.epochs_no_archopt = epochs_no_archopt
B
Bai Yifan 已提交
92 93
        self.num_epochs = num_epochs
        self.use_data_parallel = use_data_parallel
94
        self.save_dir = save_dir
B
Bai Yifan 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        self.log_freq = log_freq

    def train_one_epoch(self, train_loader, valid_loader, architect, optimizer,
                        epoch):
        objs = AvgrageMeter()
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        self.model.train()

        for step_id, (
                train_data,
                valid_data) in enumerate(zip(train_loader(), valid_loader())):
            train_image, train_label = train_data
            valid_image, valid_label = valid_data
            train_image = to_variable(train_image)
            train_label = to_variable(train_label)
            train_label.stop_gradient = True
            valid_image = to_variable(valid_image)
            valid_label = to_variable(valid_label)
            valid_label.stop_gradient = True
            n = train_image.shape[0]

117
            if epoch >= self.epochs_no_archopt:
B
Bai Yifan 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                architect.step(train_image, train_label, valid_image,
                               valid_label)

            logits = self.model(train_image)
            prec1 = fluid.layers.accuracy(input=logits, label=train_label, k=1)
            prec5 = fluid.layers.accuracy(input=logits, label=train_label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, train_label))

            if self.use_data_parallel:
                loss = self.model.scale_loss(loss)
                loss.backward()
                self.model.apply_collective_grads()
            else:
                loss.backward()

134
            optimizer.minimize(loss)
B
Bai Yifan 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
            self.model.clear_gradients()

            objs.update(loss.numpy(), n)
            top1.update(prec1.numpy(), n)
            top5.update(prec5.numpy(), n)

            if step_id % self.log_freq == 0:
                logger.info(
                    "Train Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                    format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[
                        0]))
        return top1.avg[0]

    def valid_one_epoch(self, valid_loader, epoch):
        objs = AvgrageMeter()
        top1 = AvgrageMeter()
        top5 = AvgrageMeter()
        self.model.eval()

        for step_id, (image, label) in enumerate(valid_loader):
            image = to_variable(image)
            label = to_variable(label)
            n = image.shape[0]
            logits = self.model(image)
            prec1 = fluid.layers.accuracy(input=logits, label=label, k=1)
            prec5 = fluid.layers.accuracy(input=logits, label=label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, label))
            objs.update(loss.numpy(), n)
            top1.update(prec1.numpy(), n)
            top5.update(prec5.numpy(), n)

            if step_id % self.log_freq == 0:
                logger.info(
                    "Valid Epoch {}, Step {}, loss {:.6f}, acc_1 {:.6f}, acc_5 {:.6f}".
                    format(epoch, step_id, objs.avg[0], top1.avg[0], top5.avg[
                        0]))
        return top1.avg[0]

    def train(self):
B
Bai Yifan 已提交
175 176 177 178
        """Start search process.

        """

B
Bai Yifan 已提交
179 180 181 182 183 184
        model_parameters = [
            p for p in self.model.parameters()
            if p.name not in [a.name for a in self.model.arch_parameters()]
        ]
        logger.info("param size = {:.6f}MB".format(
            count_parameters_in_MB(model_parameters)))
185 186 187 188

        device_num = fluid.dygraph.parallel.Env().nranks
        step_per_epoch = int(self.num_imgs * 0.5 /
                             (self.batchsize * device_num))
B
Bai Yifan 已提交
189 190
        if self.unrolled:
            step_per_epoch *= 2
191

B
Bai Yifan 已提交
192 193
        learning_rate = fluid.dygraph.CosineDecay(
            self.learning_rate, step_per_epoch, self.num_epochs)
194 195

        clip = fluid.clip.GradientClipByGlobalNorm(clip_norm=5.0)
B
Bai Yifan 已提交
196 197 198 199
        optimizer = fluid.optimizer.MomentumOptimizer(
            learning_rate,
            0.9,
            regularization=fluid.regularizer.L2DecayRegularizer(3e-4),
200 201
            parameter_list=model_parameters,
            grad_clip=clip)
B
Bai Yifan 已提交
202 203 204 205 206 207 208 209

        if self.use_data_parallel:
            self.train_reader = fluid.contrib.reader.distributed_batch_reader(
                self.train_reader)
            self.valid_reader = fluid.contrib.reader.distributed_batch_reader(
                self.valid_reader)

        train_loader = fluid.io.DataLoader.from_generator(
210
            capacity=1024,
B
Bai Yifan 已提交
211 212
            use_double_buffer=True,
            iterable=True,
213 214
            return_list=True,
            use_multiprocess=True)
B
Bai Yifan 已提交
215
        valid_loader = fluid.io.DataLoader.from_generator(
216
            capacity=1024,
B
Bai Yifan 已提交
217 218
            use_double_buffer=True,
            iterable=True,
219 220
            return_list=True,
            use_multiprocess=True)
B
Bai Yifan 已提交
221 222 223 224

        train_loader.set_batch_generator(self.train_reader, places=self.place)
        valid_loader.set_batch_generator(self.valid_reader, places=self.place)

225 226 227 228 229 230 231 232 233
        base_model = self.model
        architect = Architect(
            model=self.model,
            eta=learning_rate,
            arch_learning_rate=self.arch_learning_rate,
            unrolled=self.unrolled,
            parallel=self.use_data_parallel)

        self.model = architect.get_model()
B
Bai Yifan 已提交
234 235 236 237 238 239 240 241

        save_parameters = (not self.use_data_parallel) or (
            self.use_data_parallel and
            fluid.dygraph.parallel.Env().local_rank == 0)

        for epoch in range(self.num_epochs):
            logger.info('Epoch {}, lr {:.6f}'.format(
                epoch, optimizer.current_step_lr()))
242 243

            genotype = get_genotype(base_model)
B
Bai Yifan 已提交
244 245 246 247 248 249 250 251 252 253 254
            logger.info('genotype = %s', genotype)

            train_top1 = self.train_one_epoch(train_loader, valid_loader,
                                              architect, optimizer, epoch)
            logger.info("Epoch {}, train_acc {:.6f}".format(epoch, train_top1))

            if epoch == self.num_epochs - 1:
                valid_top1 = self.valid_one_epoch(valid_loader, epoch)
                logger.info("Epoch {}, valid_acc {:.6f}".format(epoch,
                                                                valid_top1))
            if save_parameters:
255 256 257
                fluid.save_dygraph(
                    self.model.state_dict(),
                    os.path.join(self.save_dir, str(epoch), "params"))