utils.py 5.1 KB
Newer Older
C
chenguowei01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chenguowei01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
import math
import cv2
C
chenguowei01 已提交
19 20
import paddle.fluid as fluid

C
chenguowei01 已提交
21
from . import logger
C
chenguowei01 已提交
22 23 24 25 26 27 28 29 30 31


def seconds_to_hms(seconds):
    h = math.floor(seconds / 3600)
    m = math.floor((seconds - h * 3600) / 60)
    s = int(seconds - h * 3600 - m * 60)
    hms_str = "{}:{}:{}".format(h, m, s)
    return hms_str


C
chenguowei01 已提交
32 33
def load_pretrained_model(model, pretrained_model):
    if pretrained_model is not None:
C
chenguowei01 已提交
34
        logger.info('Load pretrained model from {}'.format(pretrained_model))
C
chenguowei01 已提交
35 36
        if os.path.exists(pretrained_model):
            ckpt_path = os.path.join(pretrained_model, 'model')
C
chenguowei01 已提交
37 38 39 40 41
            try:
                para_state_dict, _ = fluid.load_dygraph(ckpt_path)
            except:
                para_state_dict = fluid.load_program_state(pretrained_model)

C
chenguowei01 已提交
42 43 44 45 46
            model_state_dict = model.state_dict()
            keys = model_state_dict.keys()
            num_params_loaded = 0
            for k in keys:
                if k not in para_state_dict:
C
chenguowei01 已提交
47
                    logger.warning("{} is not in pretrained model".format(k))
C
chenguowei01 已提交
48 49
                elif list(para_state_dict[k].shape) != list(
                        model_state_dict[k].shape):
C
chenguowei01 已提交
50
                    logger.warning(
C
chenguowei01 已提交
51 52 53 54 55 56 57
                        "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
                        .format(k, para_state_dict[k].shape,
                                model_state_dict[k].shape))
                else:
                    model_state_dict[k] = para_state_dict[k]
                    num_params_loaded += 1
            model.set_dict(model_state_dict)
C
chenguowei01 已提交
58
            logger.info("There are {}/{} varaibles are loaded.".format(
C
chenguowei01 已提交
59 60 61 62
                num_params_loaded, len(model_state_dict)))

        else:
            raise ValueError(
C
chenguowei01 已提交
63
                'The pretrained model directory is not Found: {}'.format(
C
chenguowei01 已提交
64
                    pretrained_model))
C
chenguowei01 已提交
65
    else:
C
chenguowei01 已提交
66
        logger.info('No pretrained model to load, train from scratch')
C
chenguowei01 已提交
67 68


C
chenguowei01 已提交
69
def resume(model, optimizer, resume_model):
C
chenguowei01 已提交
70
    if resume_model is not None:
C
chenguowei01 已提交
71
        logger.info('Resume model from {}'.format(resume_model))
C
chenguowei01 已提交
72
        if os.path.exists(resume_model):
C
chenguowei01 已提交
73
            resume_model = os.path.normpath(resume_model)
C
chenguowei01 已提交
74
            ckpt_path = os.path.join(resume_model, 'model')
C
chenguowei01 已提交
75 76
            para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
            model.set_dict(para_state_dict)
C
chenguowei01 已提交
77 78 79 80 81 82 83
            optimizer.set_dict(opti_state_dict)
            epoch = resume_model.split('_')[-1]
            if epoch.isdigit():
                epoch = int(epoch)
            return epoch
        else:
            raise ValueError(
C
chenguowei01 已提交
84
                'The resume model directory is not Found: {}'.format(
C
chenguowei01 已提交
85
                    resume_model))
C
chenguowei01 已提交
86
    else:
C
chenguowei01 已提交
87
        logger.info('No model need to resume')
C
chenguowei01 已提交
88 89


C
chenguowei01 已提交
90 91 92 93 94 95 96 97 98 99 100 101
def visualize(image, result, save_dir=None, weight=0.6):
    """
    Convert segment result to color image, and save added image.
    Args:
        image: the path of origin image
        result: the predict result of image
        save_dir: the directory for saving visual image
        weight: the image weight of visual image, and the result weight is (1 - weight)
    """
    color_map = get_color_map_list(256)
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
102 103 104
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
C
chenguowei01 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    pseudo_img = np.dstack((c1, c2, c3))

    im = cv2.imread(image)
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result


def get_color_map_list(num_classes):
    """ Returns the color map for visualizing the segmentation mask,
        which can support arbitrary number of classes.
    Args:
        num_classes: Number of classes
    Returns:
        The color map
    """
    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = color_map[1:]
    return color_map