提交 d72fb677 编写于 作者: C chenguowei01

change logging to logger

上级 ec54aeff
......@@ -21,7 +21,7 @@ import cv2
import tqdm
from dygraph import utils
import dygraph.utils.logging as logging
import dygraph.utils.logger as logger
def mkdir(path):
......@@ -39,7 +39,7 @@ def infer(model, test_dataset=None, model_dir=None, save_dir='output'):
added_saved_dir = os.path.join(save_dir, 'added')
pred_saved_dir = os.path.join(save_dir, 'prediction')
logging.info("Start to predict...")
logger.info("Start to predict...")
for im, im_info, im_path in tqdm.tqdm(test_dataset):
im = to_variable(im)
pred, _ = model(im)
......
......@@ -19,7 +19,7 @@ from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.io import DataLoader
from paddle.incubate.hapi.distributed import DistributedBatchSampler
import dygraph.utils.logging as logging
import dygraph.utils.logger as logger
from dygraph.utils import load_pretrained_model
from dygraph.utils import resume
from dygraph.utils import Timer, calculate_eta
......@@ -111,7 +111,7 @@ def train(model,
train_batch_cost = 0.0
remain_steps = total_steps - num_steps
eta = calculate_eta(remain_steps, avg_train_batch_cost)
logging.info(
logger.info(
"[TRAIN] Epoch={}/{}, Step={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
.format(epoch + 1, num_epochs, step + 1, steps_per_epoch,
avg_loss * nranks, lr, avg_train_batch_cost,
......@@ -152,7 +152,7 @@ def train(model,
best_model_dir = os.path.join(save_dir, "best_model")
fluid.save_dygraph(model.state_dict(),
os.path.join(best_model_dir, 'model'))
logging.info(
logger.info(
'Current evaluated best model in eval_dataset is epoch_{}, miou={:4f}'
.format(best_model_epoch, best_mean_iou))
......
......@@ -20,7 +20,7 @@ import cv2
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
import dygraph.utils.logging as logging
import dygraph.utils.logger as logger
from dygraph.utils import ConfusionMatrix
from dygraph.utils import Timer, calculate_eta
......@@ -39,7 +39,7 @@ def evaluate(model,
total_steps = len(eval_dataset)
conf_mat = ConfusionMatrix(num_classes, streaming=True)
logging.info(
logger.info(
"Start to evaluating(total_samples={}, total_steps={})...".format(
len(eval_dataset), total_steps))
timer = Timer()
......@@ -69,7 +69,7 @@ def evaluate(model,
time_step = timer.elapsed_time()
remain_step = total_steps - step - 1
logging.debug(
logger.debug(
"[EVAL] Epoch={}, Step={}/{}, iou={:4f}, sec/step={:.4f} | ETA {}".
format(epoch_id, step + 1, total_steps, iou, time_step,
calculate_eta(remain_step, time_step)))
......@@ -77,9 +77,9 @@ def evaluate(model,
category_iou, miou = conf_mat.mean_iou()
category_acc, macc = conf_mat.accuracy()
logging.info("[EVAL] #Images={} mAcc={:.4f} mIoU={:.4f}".format(
logger.info("[EVAL] #Images={} mAcc={:.4f} mIoU={:.4f}".format(
len(eval_dataset), macc, miou))
logging.info("[EVAL] Category IoU: " + str(category_iou))
logging.info("[EVAL] Category Acc: " + str(category_acc))
logging.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa()))
logger.info("[EVAL] Category IoU: " + str(category_iou))
logger.info("[EVAL] Category Acc: " + str(category_acc))
logger.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa()))
return miou, macc
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from . import logging
from . import logger
from . import download
from .metrics import ConfusionMatrix
from .utils import *
......
......@@ -18,7 +18,7 @@ import math
import cv2
import paddle.fluid as fluid
from . import logging
from . import logger
def seconds_to_hms(seconds):
......@@ -49,7 +49,7 @@ def get_environ_info():
def load_pretrained_model(model, pretrained_model):
if pretrained_model is not None:
logging.info('Load pretrained model from {}'.format(pretrained_model))
logger.info('Load pretrained model from {}'.format(pretrained_model))
if os.path.exists(pretrained_model):
ckpt_path = os.path.join(pretrained_model, 'model')
try:
......@@ -62,10 +62,10 @@ def load_pretrained_model(model, pretrained_model):
num_params_loaded = 0
for k in keys:
if k not in para_state_dict:
logging.warning("{} is not in pretrained model".format(k))
logger.warning("{} is not in pretrained model".format(k))
elif list(para_state_dict[k].shape) != list(
model_state_dict[k].shape):
logging.warning(
logger.warning(
"[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
.format(k, para_state_dict[k].shape,
model_state_dict[k].shape))
......@@ -73,7 +73,7 @@ def load_pretrained_model(model, pretrained_model):
model_state_dict[k] = para_state_dict[k]
num_params_loaded += 1
model.set_dict(model_state_dict)
logging.info("There are {}/{} varaibles are loaded.".format(
logger.info("There are {}/{} varaibles are loaded.".format(
num_params_loaded, len(model_state_dict)))
else:
......@@ -81,12 +81,12 @@ def load_pretrained_model(model, pretrained_model):
'The pretrained model directory is not Found: {}'.format(
pretrained_model))
else:
logging.info('No pretrained model to load, train from scratch')
logger.info('No pretrained model to load, train from scratch')
def resume(model, optimizer, resume_model):
if resume_model is not None:
logging.info('Resume model from {}'.format(resume_model))
logger.info('Resume model from {}'.format(resume_model))
if os.path.exists(resume_model):
resume_model = os.path.normpath(resume_model)
ckpt_path = os.path.join(resume_model, 'model')
......@@ -102,7 +102,7 @@ def resume(model, optimizer, resume_model):
'The resume model directory is not Found: {}'.format(
resume_model))
else:
logging.info('No model need to resume')
logger.info('No model need to resume')
def visualize(image, result, save_dir=None, weight=0.6):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册