utils.py 5.7 KB
Newer Older
C
chenguowei01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chenguowei01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
import math
import cv2
C
chenguowei01 已提交
19 20
import paddle.fluid as fluid

C
chenguowei01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
from . import logging


def seconds_to_hms(seconds):
    h = math.floor(seconds / 3600)
    m = math.floor((seconds - h * 3600) / 60)
    s = int(seconds - h * 3600 - m * 60)
    hms_str = "{}:{}:{}".format(h, m, s)
    return hms_str


def get_environ_info():
    info = dict()
    info['place'] = 'cpu'
    info['num'] = int(os.environ.get('CPU_NUM', 1))
    if os.environ.get('CUDA_VISIBLE_DEVICES', None) != "":
        if hasattr(fluid.core, 'get_cuda_device_count'):
            gpu_num = 0
            try:
                gpu_num = fluid.core.get_cuda_device_count()
            except:
                os.environ['CUDA_VISIBLE_DEVICES'] = ''
                pass
            if gpu_num > 0:
                info['place'] = 'cuda'
                info['num'] = fluid.core.get_cuda_device_count()
    return info


C
chenguowei01 已提交
50 51
def load_pretrained_model(model, pretrained_model):
    if pretrained_model is not None:
C
chenguowei01 已提交
52
        logging.info('Load pretrained model from {}'.format(pretrained_model))
C
chenguowei01 已提交
53 54
        if os.path.exists(pretrained_model):
            ckpt_path = os.path.join(pretrained_model, 'model')
C
chenguowei01 已提交
55 56 57 58 59
            try:
                para_state_dict, _ = fluid.load_dygraph(ckpt_path)
            except:
                para_state_dict = fluid.load_program_state(pretrained_model)

C
chenguowei01 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
            model_state_dict = model.state_dict()
            keys = model_state_dict.keys()
            num_params_loaded = 0
            for k in keys:
                if k not in para_state_dict:
                    logging.warning("{} is not in pretrained model".format(k))
                elif list(para_state_dict[k].shape) != list(
                        model_state_dict[k].shape):
                    logging.warning(
                        "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
                        .format(k, para_state_dict[k].shape,
                                model_state_dict[k].shape))
                else:
                    model_state_dict[k] = para_state_dict[k]
                    num_params_loaded += 1
            model.set_dict(model_state_dict)
            logging.info("There are {}/{} varaibles are loaded.".format(
                num_params_loaded, len(model_state_dict)))

        else:
            raise ValueError(
C
chenguowei01 已提交
81
                'The pretrained model directory is not Found: {}'.format(
C
chenguowei01 已提交
82
                    pretrained_model))
C
chenguowei01 已提交
83 84
    else:
        logging.info('No pretrained model to load, train from scratch')
C
chenguowei01 已提交
85 86


C
chenguowei01 已提交
87
def resume(model, optimizer, resume_model):
C
chenguowei01 已提交
88 89 90
    if resume_model is not None:
        logging.info('Resume model from {}'.format(resume_model))
        if os.path.exists(resume_model):
C
chenguowei01 已提交
91
            resume_model = os.path.normpath(resume_model)
C
chenguowei01 已提交
92
            ckpt_path = os.path.join(resume_model, 'model')
C
chenguowei01 已提交
93 94
            para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
            model.set_dict(para_state_dict)
C
chenguowei01 已提交
95 96 97 98 99 100 101
            optimizer.set_dict(opti_state_dict)
            epoch = resume_model.split('_')[-1]
            if epoch.isdigit():
                epoch = int(epoch)
            return epoch
        else:
            raise ValueError(
C
chenguowei01 已提交
102
                'The resume model directory is not Found: {}'.format(
C
chenguowei01 已提交
103
                    resume_model))
C
chenguowei01 已提交
104 105
    else:
        logging.info('No model need to resume')
C
chenguowei01 已提交
106 107


C
chenguowei01 已提交
108 109 110 111 112 113 114 115 116 117 118 119
def visualize(image, result, save_dir=None, weight=0.6):
    """
    Convert segment result to color image, and save added image.
    Args:
        image: the path of origin image
        result: the predict result of image
        save_dir: the directory for saving visual image
        weight: the image weight of visual image, and the result weight is (1 - weight)
    """
    color_map = get_color_map_list(256)
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
120 121 122
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
C
chenguowei01 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    pseudo_img = np.dstack((c1, c2, c3))

    im = cv2.imread(image)
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result


def get_color_map_list(num_classes):
    """ Returns the color map for visualizing the segmentation mask,
        which can support arbitrary number of classes.
    Args:
        num_classes: Number of classes
    Returns:
        The color map
    """
    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = color_map[1:]
    return color_map