model_libs.py 6.2 KB
Newer Older
W
wuzewu 已提交
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
W
wuzewu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from utils.config import cfg
import contextlib

bn_regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
name_scope = ""


@contextlib.contextmanager
def scope(name):
    global name_scope
    bk = name_scope
    name_scope = name_scope + name + '/'
    yield
    name_scope = bk


def max_pool(input, kernel, stride, padding):
    data = fluid.layers.pool2d(
        input,
        pool_size=kernel,
        pool_type='max',
        pool_stride=stride,
        pool_padding=padding)
    return data


def avg_pool(input, kernel, stride, padding=0):
    data = fluid.layers.pool2d(
        input,
        pool_size=kernel,
        pool_type='avg',
        pool_stride=stride,
        pool_padding=padding)
    return data


def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None):
    N, C, H, W = input.shape
    if C % G != 0:
        # print "group can not divide channle:", C, G
        for d in range(10):
            for t in [d, -d]:
                if G + t <= 0: continue
                if C % (G + t) == 0:
                    G = G + t
                    break
            if C % G == 0:
                # print "use group size:", G
                break
    assert C % G == 0
    x = fluid.layers.group_norm(
        input,
        groups=G,
        param_attr=param_attr,
        bias_attr=bias_attr,
        name=name_scope + 'group_norm')
    return x


def bn(*args, **kargs):
    if cfg.MODEL.DEFAULT_NORM_TYPE == 'bn':
        with scope('BatchNorm'):
            return fluid.layers.batch_norm(
                *args,
                epsilon=cfg.MODEL.DEFAULT_EPSILON,
                momentum=cfg.MODEL.BN_MOMENTUM,
                param_attr=fluid.ParamAttr(
                    name=name_scope + 'gamma', regularizer=bn_regularizer),
                bias_attr=fluid.ParamAttr(
                    name=name_scope + 'beta', regularizer=bn_regularizer),
                moving_mean_name=name_scope + 'moving_mean',
                moving_variance_name=name_scope + 'moving_variance',
                **kargs)
    elif cfg.MODEL.DEFAULT_NORM_TYPE == 'gn':
        with scope('GroupNorm'):
            return group_norm(
                args[0],
                cfg.MODEL.DEFAULT_GROUP_NUMBER,
                eps=cfg.MODEL.DEFAULT_EPSILON,
                param_attr=fluid.ParamAttr(
                    name=name_scope + 'gamma', regularizer=bn_regularizer),
                bias_attr=fluid.ParamAttr(
                    name=name_scope + 'beta', regularizer=bn_regularizer))
    else:
        raise Exception("Unsupport norm type:" + cfg.MODEL.DEFAULT_NORM_TYPE)


def bn_relu(data):
    return fluid.layers.relu(bn(data))


W
wuzewu 已提交
112 113 114 115
def qsigmoid(data):
    return fluid.layers.relu6(data + 3) * 0.16667


W
wuzewu 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
def relu(data):
    return fluid.layers.relu(data)


def conv(*args, **kargs):
    kargs['param_attr'] = name_scope + 'weights'
    if 'bias_attr' in kargs and kargs['bias_attr']:
        kargs['bias_attr'] = fluid.ParamAttr(
            name=name_scope + 'biases',
            regularizer=None,
            initializer=fluid.initializer.ConstantInitializer(value=0.0))
    else:
        kargs['bias_attr'] = False
    return fluid.layers.conv2d(*args, **kargs)


def deconv(*args, **kargs):
    kargs['param_attr'] = name_scope + 'weights'
    if 'bias_attr' in kargs and kargs['bias_attr']:
        kargs['bias_attr'] = name_scope + 'biases'
    else:
        kargs['bias_attr'] = False
    return fluid.layers.conv2d_transpose(*args, **kargs)


def separate_conv(input, channel, stride, filter, dilation=1, act=None):
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.33))
    with scope('depthwise'):
        input = conv(
            input,
            input.shape[1],
            filter,
            stride,
            groups=input.shape[1],
            padding=(filter // 2) * dilation,
            dilation=dilation,
156
            use_cudnn=False,
W
wuzewu 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170
            param_attr=param_attr)
        input = bn(input)
        if act: input = act(input)

    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=None,
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
    with scope('pointwise'):
        input = conv(
            input, channel, 1, 1, groups=1, padding=0, param_attr=param_attr)
        input = bn(input)
        if act: input = act(input)
    return input
L
LielinJiang 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203


def conv_bn_layer(input,
                  filter_size,
                  num_filters,
                  stride,
                  padding,
                  channels=None,
                  num_groups=1,
                  if_act=True,
                  name=None,
                  use_cudnn=True):
    conv = fluid.layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        groups=num_groups,
        act=None,
        use_cudnn=use_cudnn,
        param_attr=fluid.ParamAttr(name=name + '_weights'),
        bias_attr=False)
    bn_name = name + '_bn'
    bn = fluid.layers.batch_norm(
        input=conv,
        param_attr=fluid.ParamAttr(name=bn_name + "_scale"),
        bias_attr=fluid.ParamAttr(name=bn_name + "_offset"),
        moving_mean_name=bn_name + '_mean',
        moving_variance_name=bn_name + '_variance')
    if if_act:
        return fluid.layers.relu6(bn)
    else:
W
wuyefeilin 已提交
204
        return bn