model_libs.py 5.2 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from utils.config import cfg
import contextlib

bn_regularizer = fluid.regularizer.L2DecayRegularizer(regularization_coeff=0.0)
name_scope = ""


@contextlib.contextmanager
def scope(name):
    global name_scope
    bk = name_scope
    name_scope = name_scope + name + '/'
    yield
    name_scope = bk


def max_pool(input, kernel, stride, padding):
    data = fluid.layers.pool2d(
        input,
        pool_size=kernel,
        pool_type='max',
        pool_stride=stride,
        pool_padding=padding)
    return data


def avg_pool(input, kernel, stride, padding=0):
    data = fluid.layers.pool2d(
        input,
        pool_size=kernel,
        pool_type='avg',
        pool_stride=stride,
        pool_padding=padding)
    return data


def group_norm(input, G, eps=1e-5, param_attr=None, bias_attr=None):
    N, C, H, W = input.shape
    if C % G != 0:
        # print "group can not divide channle:", C, G
        for d in range(10):
            for t in [d, -d]:
                if G + t <= 0: continue
                if C % (G + t) == 0:
                    G = G + t
                    break
            if C % G == 0:
                # print "use group size:", G
                break
    assert C % G == 0
    x = fluid.layers.group_norm(
        input,
        groups=G,
        param_attr=param_attr,
        bias_attr=bias_attr,
        name=name_scope + 'group_norm')
    return x


def bn(*args, **kargs):
    if cfg.MODEL.DEFAULT_NORM_TYPE == 'bn':
        with scope('BatchNorm'):
            return fluid.layers.batch_norm(
                *args,
                epsilon=cfg.MODEL.DEFAULT_EPSILON,
                momentum=cfg.MODEL.BN_MOMENTUM,
                param_attr=fluid.ParamAttr(
                    name=name_scope + 'gamma', regularizer=bn_regularizer),
                bias_attr=fluid.ParamAttr(
                    name=name_scope + 'beta', regularizer=bn_regularizer),
                moving_mean_name=name_scope + 'moving_mean',
                moving_variance_name=name_scope + 'moving_variance',
                **kargs)
    elif cfg.MODEL.DEFAULT_NORM_TYPE == 'gn':
        with scope('GroupNorm'):
            return group_norm(
                args[0],
                cfg.MODEL.DEFAULT_GROUP_NUMBER,
                eps=cfg.MODEL.DEFAULT_EPSILON,
                param_attr=fluid.ParamAttr(
                    name=name_scope + 'gamma', regularizer=bn_regularizer),
                bias_attr=fluid.ParamAttr(
                    name=name_scope + 'beta', regularizer=bn_regularizer))
    else:
        raise Exception("Unsupport norm type:" + cfg.MODEL.DEFAULT_NORM_TYPE)


def bn_relu(data):
    return fluid.layers.relu(bn(data))


def relu(data):
    return fluid.layers.relu(data)


def conv(*args, **kargs):
    kargs['param_attr'] = name_scope + 'weights'
    if 'bias_attr' in kargs and kargs['bias_attr']:
        kargs['bias_attr'] = fluid.ParamAttr(
            name=name_scope + 'biases',
            regularizer=None,
            initializer=fluid.initializer.ConstantInitializer(value=0.0))
    else:
        kargs['bias_attr'] = False
    return fluid.layers.conv2d(*args, **kargs)


def deconv(*args, **kargs):
    kargs['param_attr'] = name_scope + 'weights'
    if 'bias_attr' in kargs and kargs['bias_attr']:
        kargs['bias_attr'] = name_scope + 'biases'
    else:
        kargs['bias_attr'] = False
    return fluid.layers.conv2d_transpose(*args, **kargs)


def separate_conv(input, channel, stride, filter, dilation=1, act=None):
    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.33))
    with scope('depthwise'):
        input = conv(
            input,
            input.shape[1],
            filter,
            stride,
            groups=input.shape[1],
            padding=(filter // 2) * dilation,
            dilation=dilation,
            use_cudnn=True if cfg.MODEL.FP16 else False,
            param_attr=param_attr)
        input = bn(input)
        if act: input = act(input)

    param_attr = fluid.ParamAttr(
        name=name_scope + 'weights',
        regularizer=None,
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.06))
    with scope('pointwise'):
        input = conv(
            input, channel, 1, 1, groups=1, padding=0, param_attr=param_attr)
        input = bn(input)
        if act: input = act(input)
    return input