model_builder.py 11.1 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import struct
import importlib

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
W
wuyefeilin 已提交
27 28
from loss import multi_dice_loss
from loss import multi_bce_loss
W
wuzewu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


def map_model_name(model_name):
    name_dict = {
        "unet": "unet.unet",
        "deeplabv3p": "deeplab.deeplabv3p",
        "icnet": "icnet.icnet",
P
pengmian 已提交
78
        "pspnet": "pspnet.pspnet",
W
wuyefeilin 已提交
79
        "hrnet": "hrnet.hrnet"
W
wuzewu 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    }
    if model_name in name_dict.keys():
        return name_dict[model_name]
    else:
        raise Exception(
            "unknow model name, only support unet, deeplabv3p, icnet")


def get_func(func_name):
    """Helper to return a function object by name. func_name must identify a
    function in this module or the path to a function relative to the base
    'modeling' module.
    """
    if func_name == '':
        return None
    try:
        parts = func_name.split('.')
        # Refers to a function in this module
        if len(parts) == 1:
            return globals()[parts[0]]
        # Otherwise, assume we're referencing a module under modeling
        module_name = 'models.' + '.'.join(parts[:-1])
        module = importlib.import_module(module_name)
        return getattr(module, parts[-1])
    except Exception:
        print('Failed to find function: {}'.format(func_name))
    return module


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuyefeilin 已提交
115

W
wuyefeilin 已提交
116 117 118 119 120 121 122 123 124 125 126
def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit

W
wuzewu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN):
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

    image_shape = [cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [1, height, width]
    class_num = cfg.DATASET.NUM_CLASSES

    with fluid.program_guard(main_prog, start_prog):
        with fluid.unique_name.guard():
144 145 146
            # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
            # 预测部署时只须对输入图像增加batch_size维度即可
            if ModelPhase.is_predict(phase):
W
wuyefeilin 已提交
147 148
                origin_image = fluid.layers.data(
                    name='image',
149
                    shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
W
wuyefeilin 已提交
150 151
                    dtype='float32',
                    append_batch_size=False)
152 153 154 155 156 157
                image = fluid.layers.transpose(origin_image, [0, 3, 1, 2])
                origin_shape = fluid.layers.shape(image)[-2:]
                mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
                mean = fluid.layers.assign(mean.astype('float32'))
                std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
                std = fluid.layers.assign(std.astype('float32'))
W
wuyefeilin 已提交
158 159 160 161 162 163
                image = fluid.layers.resize_bilinear(
                    image,
                    out_shape=[height, width],
                    align_corners=False,
                    align_mode=0)
                image = (image / 255 - mean) / std
164 165 166
            else:
                image = fluid.layers.data(
                    name='image', shape=image_shape, dtype='float32')
W
wuzewu 已提交
167 168 169 170 171 172 173 174 175 176 177 178
            label = fluid.layers.data(
                name='label', shape=grt_shape, dtype='int32')
            mask = fluid.layers.data(
                name='mask', shape=grt_shape, dtype='int32')

            # use PyReader when doing traning and evaluation
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
                py_reader = fluid.io.PyReader(
                    feed_list=[image, label, mask],
                    capacity=cfg.DATALOADER.BUF_SIZE,
                    iterable=False,
                    use_double_buffer=True)
179

W
wuzewu 已提交
180 181
            model_name = map_model_name(cfg.MODEL.MODEL_NAME)
            model_func = get_func("modeling." + model_name)
182

W
wuyefeilin 已提交
183
            loss_type = cfg.SOLVER.LOSS
184 185
            if not isinstance(loss_type, list):
                loss_type = list(loss_type)
186

187
            # dice_loss或bce_loss只适用两类分割中
W
wuyefeilin 已提交
188 189 190 191 192 193
            if class_num > 2 and (("dice_loss" in loss_type) or
                                  ("bce_loss" in loss_type)):
                raise Exception(
                    "dice loss and bce loss is only applicable to binary classfication"
                )

194
            # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
W
wuyefeilin 已提交
195 196 197
            if ("dice_loss" in loss_type) or ("bce_loss" in loss_type):
                class_num = 1
                if "softmax_loss" in loss_type:
W
wuyefeilin 已提交
198 199 200 201
                    raise Exception(
                        "softmax loss can not combine with dice loss or bce loss"
                    )

W
wuzewu 已提交
202 203
            logits = model_func(image, class_num)

204
            # 根据选择的loss函数计算相应的损失函数
W
wuzewu 已提交
205
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
W
wuyefeilin 已提交
206 207
                loss_valid = False
                avg_loss_list = []
208
                valid_loss = []
W
wuyefeilin 已提交
209 210 211
                if "softmax_loss" in loss_type:
                    avg_loss_list.append(
                        multi_softmax_with_loss(logits, label, mask, class_num))
W
wuyefeilin 已提交
212
                    loss_valid = True
213
                    valid_loss.append("softmax_loss")
W
wuyefeilin 已提交
214 215 216
                if "dice_loss" in loss_type:
                    avg_loss_list.append(multi_dice_loss(logits, label, mask))
                    loss_valid = True
217
                    valid_loss.append("dice_loss")
W
wuyefeilin 已提交
218 219 220
                if "bce_loss" in loss_type:
                    avg_loss_list.append(multi_bce_loss(logits, label, mask))
                    loss_valid = True
221
                    valid_loss.append("bce_loss")
W
wuyefeilin 已提交
222
                if not loss_valid:
W
wuyefeilin 已提交
223 224 225 226 227 228
                    raise Exception(
                        "SOLVER.LOSS: {} is set wrong. it should "
                        "include one of (softmax_loss, bce_loss, dice_loss) at least"
                        " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss']"
                        .format(cfg.SOLVER.LOSS))

229 230
                invalid_loss = [x for x in loss_type if x not in valid_loss]
                if len(invalid_loss) > 0:
W
wuyefeilin 已提交
231 232 233
                    print(
                        "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                        .format(invalid_loss))
234

W
wuyefeilin 已提交
235 236 237
                avg_loss = 0
                for i in range(0, len(avg_loss_list)):
                    avg_loss += avg_loss_list[i]
W
wuzewu 已提交
238 239 240 241 242 243 244 245 246 247 248 249

            #get pred result in original size
            if isinstance(logits, tuple):
                logit = logits[0]
            else:
                logit = logits

            if logit.shape[2:] != label.shape[2:]:
                logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

            # return image input and logit output for inference graph prune
            if ModelPhase.is_predict(phase):
250
                # 两类分割中,使用dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
W
wuyefeilin 已提交
251 252 253 254
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
W
wuyefeilin 已提交
255 256 257 258 259
                logit = fluid.layers.resize_bilinear(
                    logit,
                    out_shape=origin_shape,
                    align_corners=False,
                    align_mode=0)
260 261 262
                logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
                logit = fluid.layers.argmax(logit, axis=3)
                return origin_image, logit
263

W
wuyefeilin 已提交
264 265 266 267 268
            if class_num == 1:
                out = sigmoid_to_softmax(logit)
                out = fluid.layers.transpose(out, [0, 2, 3, 1])
            else:
                out = fluid.layers.transpose(logit, [0, 2, 3, 1])
269

W
wuzewu 已提交
270 271 272
            pred = fluid.layers.argmax(out, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            if ModelPhase.is_visual(phase):
W
wuyefeilin 已提交
273 274 275 276
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
W
wuzewu 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
                return pred, logit

            if ModelPhase.is_eval(phase):
                return py_reader, avg_loss, pred, label, mask

            if ModelPhase.is_train(phase):
                optimizer = solver.Solver(main_prog, start_prog)
                decayed_lr = optimizer.optimise(avg_loss)
                return py_reader, avg_loss, decayed_lr, pred, label, mask


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)