提交 26fd69ea 编写于 作者: W wuyefeilin 提交者: wuzewu

add hrnet (#88)

* add hrnet
上级 a676fa99
......@@ -76,6 +76,7 @@ def map_model_name(model_name):
"deeplabv3p": "deeplab.deeplabv3p",
"icnet": "icnet.icnet",
"pspnet": "pspnet.pspnet",
"hrnet": "hrnet.hrnet"
}
if model_name in name_dict.keys():
return name_dict[model_name]
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
from utils.config import cfg
def conv_bn_layer(input, filter_size, num_filters, stride=1, padding=1, num_groups=1, if_act=True, name=None):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=num_groups,
act=None,
param_attr=ParamAttr(initializer=MSRA(), name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(input=conv,
param_attr=ParamAttr(name=bn_name + "_scale",
initializer=fluid.initializer.Constant(1.0)),
bias_attr=ParamAttr(name=bn_name + "_offset",
initializer=fluid.initializer.Constant(0.0)),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
bn = fluid.layers.relu(bn)
return bn
def basic_block(input, num_filters, stride=1, downsample=False, name=None):
residual = input
conv = conv_bn_layer(input=input, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv1')
conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, if_act=False, name=name + '_conv2')
if downsample:
residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, if_act=False,
name=name + '_downsample')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def bottleneck_block(input, num_filters, stride=1, downsample=False, name=None):
residual = input
conv = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters, name=name + '_conv1')
conv = conv_bn_layer(input=conv, filter_size=3, num_filters=num_filters, stride=stride, name=name + '_conv2')
conv = conv_bn_layer(input=conv, filter_size=1, num_filters=num_filters * 4, if_act=False,
name=name + '_conv3')
if downsample:
residual = conv_bn_layer(input=input, filter_size=1, num_filters=num_filters * 4, if_act=False,
name=name + '_downsample')
return fluid.layers.elementwise_add(x=residual, y=conv, act='relu')
def fuse_layers(x, channels, multi_scale_output=True, name=None):
out = []
for i in range(len(channels) if multi_scale_output else 1):
residual = x[i]
shape = residual.shape
width = shape[-1]
height = shape[-2]
for j in range(len(channels)):
if j > i:
y = conv_bn_layer(x[j], filter_size=1, num_filters=channels[i], if_act=False,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1))
y = fluid.layers.resize_bilinear(input=y, out_shape=[height, width])
residual = fluid.layers.elementwise_add(x=residual, y=y, act=None)
elif j < i:
y = x[j]
for k in range(i - j):
if k == i - j - 1:
y = conv_bn_layer(y, filter_size=3, num_filters=channels[i], stride=2, if_act=False,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))
else:
y = conv_bn_layer(y, filter_size=3, num_filters=channels[j], stride=2,
name=name + '_layer_' + str(i + 1) + '_' + str(j + 1) + '_' + str(k + 1))
residual = fluid.layers.elementwise_add(x=residual, y=y, act=None)
residual = fluid.layers.relu(residual)
out.append(residual)
return out
def branches(x, block_num, channels, name=None):
out = []
for i in range(len(channels)):
residual = x[i]
for j in range(block_num):
residual = basic_block(residual, channels[i],
name=name + '_branch_layer_' + str(i + 1) + '_' + str(j + 1))
out.append(residual)
return out
def high_resolution_module(x, channels, multi_scale_output=True, name=None):
residual = branches(x, 4, channels, name=name)
out = fuse_layers(residual, channels, multi_scale_output=multi_scale_output, name=name)
return out
def transition_layer(x, in_channels, out_channels, name=None):
num_in = len(in_channels)
num_out = len(out_channels)
out = []
for i in range(num_out):
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = conv_bn_layer(x[i], filter_size=3, num_filters=out_channels[i],
name=name + '_layer_' + str(i + 1))
out.append(residual)
else:
out.append(x[i])
else:
residual = conv_bn_layer(x[-1], filter_size=3, num_filters=out_channels[i], stride=2,
name=name + '_layer_' + str(i + 1))
out.append(residual)
return out
def stage(x, num_modules, channels, multi_scale_output=True, name=None):
out = x
for i in range(num_modules):
if i == num_modules - 1 and multi_scale_output == False:
out = high_resolution_module(out, channels, multi_scale_output=False, name=name + '_' + str(i + 1))
else:
out = high_resolution_module(out, channels, name=name + '_' + str(i + 1))
return out
def layer1(input, name=None):
conv = input
for i in range(4):
conv = bottleneck_block(conv, num_filters=64, downsample=True if i == 0 else False,
name=name + '_' + str(i + 1))
return conv
def highResolutionNet(input, num_classes):
channels_2 = cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS
channels_3 = cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS
channels_4 = cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS
num_modules_2 = cfg.MODEL.HRNET.STAGE2.NUM_MODULES
num_modules_3 = cfg.MODEL.HRNET.STAGE3.NUM_MODULES
num_modules_4 = cfg.MODEL.HRNET.STAGE4.NUM_MODULES
x = conv_bn_layer(input=input, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_1')
x = conv_bn_layer(input=x, filter_size=3, num_filters=64, stride=2, if_act=True, name='layer1_2')
la1 = layer1(x, name='layer2')
tr1 = transition_layer([la1], [256], channels_2, name='tr1')
st2 = stage(tr1, num_modules_2, channels_2, name='st2')
tr2 = transition_layer(st2, channels_2, channels_3, name='tr2')
st3 = stage(tr2, num_modules_3, channels_3, name='st3')
tr3 = transition_layer(st3, channels_3, channels_4, name='tr3')
st4 = stage(tr3, num_modules_4, channels_4, name='st4')
# upsample
shape = st4[0].shape
height, width = shape[-2], shape[-1]
st4[1] = fluid.layers.resize_bilinear(
st4[1], out_shape=[height, width])
st4[2] = fluid.layers.resize_bilinear(
st4[2], out_shape=[height, width])
st4[3] = fluid.layers.resize_bilinear(
st4[3], out_shape=[height, width])
out = fluid.layers.concat(st4, axis=1)
last_channels = sum(channels_4)
out = conv_bn_layer(input=out, filter_size=1, num_filters=last_channels, stride=1, if_act=True, name='conv-2')
out= fluid.layers.conv2d(
input=out,
num_filters=num_classes,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(initializer=MSRA(), name='conv-1_weights'),
bias_attr=False)
out = fluid.layers.resize_bilinear(out, input.shape[2:])
return out
def hrnet(input, num_classes):
logit = highResolutionNet(input, num_classes)
return logit
if __name__ == '__main__':
image_shape = [3, 769, 769]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
logit = hrnet(image, 4)
print("logit:", logit.shape)
......@@ -213,6 +213,18 @@ cfg.MODEL.PSPNET.DEPTH_MULTIPLIER = 1
# RESNET backbone 层数 设置
cfg.MODEL.PSPNET.LAYERS = 50
########################## HRNET模型配置 ######################################
# HRNET STAGE2 设置
cfg.MODEL.HRNET.STAGE2.NUM_MODULES = 1
cfg.MODEL.HRNET.STAGE2.NUM_CHANNELS = [40, 80]
# HRNET STAGE3 设置
cfg.MODEL.HRNET.STAGE3.NUM_MODULES = 4
cfg.MODEL.HRNET.STAGE3.NUM_CHANNELS = [40, 80, 160]
# HRNET STAGE4 设置
cfg.MODEL.HRNET.STAGE4.NUM_MODULES = 3
cfg.MODEL.HRNET.STAGE4.NUM_CHANNELS = [40, 80, 160, 320]
########################## 预测部署模型配置 ###################################
# 预测保存的模型名称
cfg.FREEZE.MODEL_FILENAME = '__model__'
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册