video_infer.py 6.3 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19 20 21
import argparse
import os
import os.path as osp
import cv2
import numpy as np

C
chenguowei01 已提交
22
from utils.humanseg_postprocess import postprocess, threshold_mask
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import models
import transforms


def parse_args():
    parser = argparse.ArgumentParser(description='HumanSeg inference for video')
    parser.add_argument(
        '--model_dir',
        dest='model_dir',
        help='Model path for inference',
        type=str)
    parser.add_argument(
        '--video_path',
        dest='video_path',
        help=
        'Video path for inference, camera will be used if the path not existing',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the inference results',
        type=str,
        default='./output')
C
chenguowei01 已提交
47 48 49 50 51 52 53
    parser.add_argument(
        "--image_shape",
        dest="image_shape",
        help="The image shape for net inputs.",
        nargs=2,
        default=[192, 192],
        type=int)
54 55 56 57

    return parser.parse_args()


C
chenguowei01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
def predict(img, model, test_transforms):
    model.arrange_transform(transforms=test_transforms, mode='test')
    img, im_info = test_transforms(img)
    img = np.expand_dims(img, axis=0)
    result = model.exe.run(
        model.test_prog,
        feed={'image': img},
        fetch_list=list(model.test_outputs.values()))
    score_map = result[1]
    score_map = np.squeeze(score_map, axis=0)
    score_map = np.transpose(score_map, (1, 2, 0))
    return score_map, im_info


def recover(img, im_info):
    keys = list(im_info.keys())
    for k in keys[::-1]:
        if k == 'shape_before_resize':
            h, w = im_info[k][0], im_info[k][1]
            img = cv2.resize(img, (w, h), cv2.INTER_LINEAR)
        elif k == 'shape_before_padding':
            h, w = im_info[k][0], im_info[k][1]
            img = img[0:h, 0:w]
    return img


84
def video_infer(args):
C
chenguowei01 已提交
85 86
    resize_h = args.image_shape[1]
    resize_w = args.image_shape[0]
C
chenguowei01 已提交
87

88
    test_transforms = transforms.Compose(
C
chenguowei01 已提交
89
        [transforms.Resize((resize_w, resize_h)),
90 91 92 93 94 95 96 97 98 99 100
         transforms.Normalize()])
    model = models.load_model(args.model_dir)
    if not args.video_path:
        cap = cv2.VideoCapture(0)
    else:
        cap = cv2.VideoCapture(args.video_path)
    if not cap.isOpened():
        raise IOError("Error opening video stream or file, "
                      "--video_path whether existing: {}"
                      " or camera whether working".format(args.video_path))
        return
C
chenguowei01 已提交
101 102 103 104 105 106 107 108 109 110

    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
    prev_gray = np.zeros((resize_h, resize_w), np.uint8)
    prev_cfd = np.zeros((resize_h, resize_w), np.float32)
    is_init = True

    fps = cap.get(cv2.CAP_PROP_FPS)
111
    if args.video_path:
C
chenguowei01 已提交
112

113
        # 用于保存预测结果视频
C
chenguowei01 已提交
114 115
        if not osp.exists(args.save_dir):
            os.makedirs(args.save_dir)
116 117 118 119 120 121 122
        out = cv2.VideoWriter(
            osp.join(args.save_dir, 'result.avi'),
            cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (width, height))
        # 开始获取视频帧
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
C
chenguowei01 已提交
123
                score_map, im_info = predict(frame, model, test_transforms)
C
chenguowei01 已提交
124 125 126 127 128 129 130 131 132 133 134 135
                cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
                scoremap = 255 * score_map[:, :, 1]
                optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd, \
                        disflow, is_init)
                prev_gray = cur_gray.copy()
                prev_cfd = optflow_map.copy()
                is_init = False
                optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
                optflow_map = threshold_mask(
                    optflow_map, thresh_bg=0.2, thresh_fg=0.8)
                img_mat = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
C
chenguowei01 已提交
136
                img_mat = recover(img_mat, im_info)
C
chenguowei01 已提交
137 138 139 140
                bg_im = np.ones_like(img_mat) * 255
                comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
                    np.uint8)
                out.write(comb)
141 142 143 144 145 146 147 148 149
            else:
                break
        cap.release()
        out.release()

    else:
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
C
chenguowei01 已提交
150
                score_map, im_info = predict(frame, model, test_transforms)
C
chenguowei01 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163
                cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
                scoremap = 255 * score_map[:, :, 1]
                optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd, \
                                          disflow, is_init)
                prev_gray = cur_gray.copy()
                prev_cfd = optflow_map.copy()
                is_init = False
                # optflow_map = optflow_map/255.0
                optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
                optflow_map = threshold_mask(
                    optflow_map, thresh_bg=0.2, thresh_fg=0.8)
                img_mat = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
C
chenguowei01 已提交
164
                img_mat = recover(img_mat, im_info)
C
chenguowei01 已提交
165 166 167 168
                bg_im = np.ones_like(img_mat) * 255
                comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
                    np.uint8)
                cv2.imshow('HumanSegmentation', comb)
169 170 171 172 173 174 175 176 177 178
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            else:
                break
        cap.release()


if __name__ == "__main__":
    args = parse_args()
    video_infer(args)