提交 d94b69c0 编写于 作者: C chenguowei01

fix humanseg postprocess

上级 3cfe7bc3
......@@ -158,6 +158,4 @@ def postprocess(image, output_data):
optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
optflow_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
bg_im = np.ones_like(optflow_map) * 255
comb = (optflow_map * image + (1 - optflow_map) * bg_im).astype(np.uint8)
return comb
return optflow_map
......@@ -42,7 +42,6 @@ def predict(img, model, test_transforms):
feed={'image': img},
fetch_list=list(model.test_outputs.values()))
score_map = result[1]
print(score_map)
score_map = np.squeeze(score_map, axis=0)
score_map = np.transpose(score_map, (1, 2, 0))
return score_map, im_info
......@@ -92,7 +91,10 @@ def video_infer(args):
img = cv2.resize(frame, (192, 192))
img_mat = postprocess(img, score_map)
img_mat = recover(img_mat, im_info)
out.write(img_mat)
bg_im = np.ones_like(img_mat) * 255
comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
np.uint8)
out.write(comb)
else:
break
cap.release()
......@@ -106,8 +108,10 @@ def video_infer(args):
img = cv2.resize(frame, (192, 192))
img_mat = postprocess(img, score_map)
img_mat = recover(img_mat, im_info)
print(img_mat.shape)
cv2.imshow('HumanSegmentation', img_mat)
bg_im = np.ones_like(img_mat) * 255
comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
np.uint8)
cv2.imshow('HumanSegmentation', comb)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册