video_infer.py 5.7 KB
Newer Older
1 2 3 4 5 6
import argparse
import os
import os.path as osp
import cv2
import numpy as np

C
chenguowei01 已提交
7
from utils.humanseg_postprocess import postprocess, threshold_mask
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
import models
import transforms


def parse_args():
    parser = argparse.ArgumentParser(description='HumanSeg inference for video')
    parser.add_argument(
        '--model_dir',
        dest='model_dir',
        help='Model path for inference',
        type=str)
    parser.add_argument(
        '--video_path',
        dest='video_path',
        help=
        'Video path for inference, camera will be used if the path not existing',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the inference results',
        type=str,
        default='./output')
C
chenguowei01 已提交
32 33 34 35 36 37 38
    parser.add_argument(
        "--image_shape",
        dest="image_shape",
        help="The image shape for net inputs.",
        nargs=2,
        default=[192, 192],
        type=int)
39 40 41 42

    return parser.parse_args()


C
chenguowei01 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def predict(img, model, test_transforms):
    model.arrange_transform(transforms=test_transforms, mode='test')
    img, im_info = test_transforms(img)
    img = np.expand_dims(img, axis=0)
    result = model.exe.run(
        model.test_prog,
        feed={'image': img},
        fetch_list=list(model.test_outputs.values()))
    score_map = result[1]
    score_map = np.squeeze(score_map, axis=0)
    score_map = np.transpose(score_map, (1, 2, 0))
    return score_map, im_info


def recover(img, im_info):
    keys = list(im_info.keys())
    for k in keys[::-1]:
        if k == 'shape_before_resize':
            h, w = im_info[k][0], im_info[k][1]
            img = cv2.resize(img, (w, h), cv2.INTER_LINEAR)
        elif k == 'shape_before_padding':
            h, w = im_info[k][0], im_info[k][1]
            img = img[0:h, 0:w]
    return img


69
def video_infer(args):
C
chenguowei01 已提交
70 71
    resize_h = args.image_shape[1]
    resize_w = args.image_shape[0]
C
chenguowei01 已提交
72

73
    test_transforms = transforms.Compose(
C
chenguowei01 已提交
74
        [transforms.Resize((resize_w, resize_h)),
75 76 77 78 79 80 81 82 83 84 85
         transforms.Normalize()])
    model = models.load_model(args.model_dir)
    if not args.video_path:
        cap = cv2.VideoCapture(0)
    else:
        cap = cv2.VideoCapture(args.video_path)
    if not cap.isOpened():
        raise IOError("Error opening video stream or file, "
                      "--video_path whether existing: {}"
                      " or camera whether working".format(args.video_path))
        return
C
chenguowei01 已提交
86 87 88 89 90 91 92 93 94 95

    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
    prev_gray = np.zeros((resize_h, resize_w), np.uint8)
    prev_cfd = np.zeros((resize_h, resize_w), np.float32)
    is_init = True

    fps = cap.get(cv2.CAP_PROP_FPS)
96
    if args.video_path:
C
chenguowei01 已提交
97

98
        # 用于保存预测结果视频
C
chenguowei01 已提交
99 100
        if not osp.exists(args.save_dir):
            os.makedirs(args.save_dir)
101 102 103 104 105 106 107
        out = cv2.VideoWriter(
            osp.join(args.save_dir, 'result.avi'),
            cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (width, height))
        # 开始获取视频帧
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
C
chenguowei01 已提交
108
                score_map, im_info = predict(frame, model, test_transforms)
C
chenguowei01 已提交
109 110 111 112 113 114 115 116 117 118 119 120
                cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
                scoremap = 255 * score_map[:, :, 1]
                optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd, \
                        disflow, is_init)
                prev_gray = cur_gray.copy()
                prev_cfd = optflow_map.copy()
                is_init = False
                optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
                optflow_map = threshold_mask(
                    optflow_map, thresh_bg=0.2, thresh_fg=0.8)
                img_mat = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
C
chenguowei01 已提交
121
                img_mat = recover(img_mat, im_info)
C
chenguowei01 已提交
122 123 124 125
                bg_im = np.ones_like(img_mat) * 255
                comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
                    np.uint8)
                out.write(comb)
126 127 128 129 130 131 132 133 134
            else:
                break
        cap.release()
        out.release()

    else:
        while cap.isOpened():
            ret, frame = cap.read()
            if ret:
C
chenguowei01 已提交
135
                score_map, im_info = predict(frame, model, test_transforms)
C
chenguowei01 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
                cur_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                cur_gray = cv2.resize(cur_gray, (resize_w, resize_h))
                scoremap = 255 * score_map[:, :, 1]
                optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd, \
                                          disflow, is_init)
                prev_gray = cur_gray.copy()
                prev_cfd = optflow_map.copy()
                is_init = False
                # optflow_map = optflow_map/255.0
                optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
                optflow_map = threshold_mask(
                    optflow_map, thresh_bg=0.2, thresh_fg=0.8)
                img_mat = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
C
chenguowei01 已提交
149
                img_mat = recover(img_mat, im_info)
C
chenguowei01 已提交
150 151 152 153
                bg_im = np.ones_like(img_mat) * 255
                comb = (img_mat * frame + (1 - img_mat) * bg_im).astype(
                    np.uint8)
                cv2.imshow('HumanSegmentation', comb)
154 155 156 157 158 159 160 161 162 163
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            else:
                break
        cap.release()


if __name__ == "__main__":
    args = parse_args()
    video_infer(args)