deeplab.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
import paddle.nn.functional as F
from paddle import nn
from paddleseg.cvlibs import manager
M
michaelowenliu 已提交
21
from paddleseg.models.common import pyramid_pool
W
wuzewu 已提交
22
from paddleseg.models.common.layer_libs import ConvBNReLU, SeparableConvBNReLU, AuxLayer
23 24 25 26 27 28 29 30 31 32
from paddleseg.utils import utils

__all__ = ['DeepLabV3P', 'DeepLabV3']


@manager.MODELS.add_component
class DeepLabV3P(nn.Layer):
    """
    The DeepLabV3Plus implementation based on PaddlePaddle.

M
michaelowenliu 已提交
33 34
    The original article refers to
     Liang-Chieh Chen, et, al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
35 36 37 38
     (https://arxiv.org/abs/1802.02611)

    Args:
        num_classes (int): the unique number of target classes.
M
michaelowenliu 已提交
39 40 41
        backbone (paddle.nn.Layer): backbone network, currently support Resnet50_vd/Resnet101_vd/Xception65.
        backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
            the first index will be taken as a low-level feature in Decoder component;
M
michaelowenliu 已提交
42 43 44 45 46
            the second one will be taken as input of ASPP component.
            Usually backbone consists of four downsampling stage, and return an output of
            each stage, so we set default (0, 3), which means taking feature map of the first
            stage in backbone as low-level feature used in Decoder, and feature map of the fourth
            stage as input of ASPP.
M
michaelowenliu 已提交
47 48 49 50
        aspp_ratios (tuple): the dilation rate using in ASSP module.
            if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
            if output_stride=8, aspp_ratios is (1, 12, 24, 36).
        aspp_out_channels (int): the output channels of ASPP module.
M
michaelowenliu 已提交
51
        pretrained (str): the path of pretrained model. Default to None.
52 53 54 55 56 57
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=(0, 3),
M
michaelowenliu 已提交
58
                 aspp_ratios=(1, 6, 12, 18),
M
michaelowenliu 已提交
59 60
                 aspp_out_channels=256,
                 pretrained=None):
61 62 63 64

        super(DeepLabV3P, self).__init__()

        self.backbone = backbone
M
michaelowenliu 已提交
65 66 67
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]
M
michaelowenliu 已提交
68

M
michaelowenliu 已提交
69 70 71
        self.head = DeepLabV3PHead(num_classes, backbone_indices,
                                   backbone_channels, aspp_ratios,
                                   aspp_out_channels)
M
michaelowenliu 已提交
72 73 74 75 76 77 78 79 80 81

        utils.load_entire_model(self, pretrained)

    def forward(self, input):
        feat_list = self.backbone(input)
        logit_list = self.head(feat_list)
        return [
            F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
        ]

M
michaelowenliu 已提交
82

M
michaelowenliu 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95
class DeepLabV3PHead(nn.Layer):
    """
    The DeepLabV3PHead implementation based on PaddlePaddle.

    Args:
        num_classes (int): the unique number of target classes.
        backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
            the first index will be taken as a low-level feature in Decoder component;
            the second one will be taken as input of ASPP component.
            Usually backbone consists of four downsampling stage, and return an output of
            each stage, so we set default (0, 3), which means taking feature map of the first
            stage in backbone as low-level feature used in Decoder, and feature map of the fourth
            stage as input of ASPP.
M
michaelowenliu 已提交
96
        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
M
michaelowenliu 已提交
97 98 99 100
        aspp_ratios (tuple): the dilation rate using in ASSP module.
            if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
            if output_stride=8, aspp_ratios is (1, 12, 24, 36).
        aspp_out_channels (int): the output channels of ASPP module.
W
wuzewu 已提交
101

M
michaelowenliu 已提交
102 103 104 105 106 107 108 109 110 111
    """

    def __init__(self,
                 num_classes,
                 backbone_indices,
                 backbone_channels,
                 aspp_ratios=(1, 6, 12, 18),
                 aspp_out_channels=256):

        super(DeepLabV3PHead, self).__init__()
M
michaelowenliu 已提交
112

M
michaelowenliu 已提交
113
        self.aspp = pyramid_pool.ASPPModule(
M
michaelowenliu 已提交
114
            aspp_ratios,
M
michaelowenliu 已提交
115
            backbone_channels[1],
M
michaelowenliu 已提交
116 117 118
            aspp_out_channels,
            sep_conv=True,
            image_pooling=True)
M
michaelowenliu 已提交
119
        self.decoder = Decoder(num_classes, backbone_channels[0])
120
        self.backbone_indices = backbone_indices
M
michaelowenliu 已提交
121
        self.init_weight()
122

M
michaelowenliu 已提交
123
    def forward(self, feat_list):
124 125 126 127 128 129 130 131 132
        logit_list = []
        low_level_feat = feat_list[self.backbone_indices[0]]
        x = feat_list[self.backbone_indices[1]]
        x = self.aspp(x)
        logit = self.decoder(x, low_level_feat)
        logit_list.append(logit)

        return logit_list

M
michaelowenliu 已提交
133
    def init_weight(self):
M
michaelowenliu 已提交
134
        pass
135

M
michaelowenliu 已提交
136

137 138 139 140 141
@manager.MODELS.add_component
class DeepLabV3(nn.Layer):
    """
    The DeepLabV3 implementation based on PaddlePaddle.

M
michaelowenliu 已提交
142 143
    The original article refers to
     Liang-Chieh Chen, et, al. "Rethinking Atrous Convolution for Semantic Image Segmentation"
144 145 146
     (https://arxiv.org/pdf/1706.05587.pdf)

    Args:
W
wuzewu 已提交
147
        Refer to DeepLabV3P above
148
    """
M
michaelowenliu 已提交
149

150 151 152
    def __init__(self,
                 num_classes,
                 backbone,
M
michaelowenliu 已提交
153 154
                 pretrained=None,
                 backbone_indices=(3, ),
M
michaelowenliu 已提交
155 156
                 aspp_ratios=(1, 6, 12, 18),
                 aspp_out_channels=256):
157 158 159 160

        super(DeepLabV3, self).__init__()

        self.backbone = backbone
M
michaelowenliu 已提交
161 162 163 164 165 166 167
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]

        self.head = DeepLabV3Head(num_classes, backbone_indices,
                                  backbone_channels, aspp_ratios,
                                  aspp_out_channels)
M
michaelowenliu 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187

        utils.load_entire_model(self, pretrained)

    def forward(self, input):
        feat_list = self.backbone(input)
        logit_list = self.head(feat_list)
        return [
            F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
        ]


class DeepLabV3Head(nn.Layer):
    def __init__(self,
                 num_classes,
                 backbone_indices=(3, ),
                 backbone_channels=(2048, ),
                 aspp_ratios=(1, 6, 12, 18),
                 aspp_out_channels=256):

        super(DeepLabV3Head, self).__init__()
M
michaelowenliu 已提交
188 189

        self.aspp = pyramid_pool.ASPPModule(
M
michaelowenliu 已提交
190
            aspp_ratios,
M
michaelowenliu 已提交
191
            backbone_channels[0],
M
michaelowenliu 已提交
192 193 194
            aspp_out_channels,
            sep_conv=False,
            image_pooling=True)
M
michaelowenliu 已提交
195

196
        self.cls = nn.Conv2d(
M
michaelowenliu 已提交
197
            in_channels=aspp_out_channels,
198 199 200 201
            out_channels=num_classes,
            kernel_size=1)

        self.backbone_indices = backbone_indices
M
michaelowenliu 已提交
202
        self.init_weight()
203

M
michaelowenliu 已提交
204
    def forward(self, feat_list):
205 206
        logit_list = []
        x = feat_list[self.backbone_indices[0]]
M
michaelowenliu 已提交
207
        x = self.aspp(x)
208 209 210 211 212
        logit = self.cls(x)
        logit_list.append(logit)

        return logit_list

M
michaelowenliu 已提交
213 214
    def init_weight(self):
        pass
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229


class Decoder(nn.Layer):
    """
    Decoder module of DeepLabV3P model

    Args:
        num_classes (int): the number of classes.
        in_channels (int): the number of input channels in decoder module.

    """

    def __init__(self, num_classes, in_channels):
        super(Decoder, self).__init__()

M
michaelowenliu 已提交
230
        self.conv_bn_relu1 = ConvBNReLU(
231 232
            in_channels=in_channels, out_channels=48, kernel_size=1)

W
wuzewu 已提交
233
        self.conv_bn_relu2 = SeparableConvBNReLU(
234
            in_channels=304, out_channels=256, kernel_size=3, padding=1)
W
wuzewu 已提交
235
        self.conv_bn_relu3 = SeparableConvBNReLU(
236 237 238 239 240 241 242 243 244 245 246 247
            in_channels=256, out_channels=256, kernel_size=3, padding=1)
        self.conv = nn.Conv2d(
            in_channels=256, out_channels=num_classes, kernel_size=1)

    def forward(self, x, low_level_feat):
        low_level_feat = self.conv_bn_relu1(low_level_feat)
        x = F.resize_bilinear(x, low_level_feat.shape[2:])
        x = paddle.concat([x, low_level_feat], axis=1)
        x = self.conv_bn_relu2(x)
        x = self.conv_bn_relu3(x)
        x = self.conv(x)
        return x