deeplab.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
import paddle.nn.functional as F
from paddle import nn
from paddleseg.cvlibs import manager
M
michaelowenliu 已提交
21 22
from paddleseg.models.common import pyramid_pool
from paddleseg.models.common.layer_libs import ConvBNReLU, DepthwiseConvBNReLU, AuxLayer
23 24 25 26 27 28 29 30 31 32
from paddleseg.utils import utils

__all__ = ['DeepLabV3P', 'DeepLabV3']


@manager.MODELS.add_component
class DeepLabV3P(nn.Layer):
    """
    The DeepLabV3Plus implementation based on PaddlePaddle.

M
michaelowenliu 已提交
33 34
    The original article refers to
     Liang-Chieh Chen, et, al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
35 36 37 38
     (https://arxiv.org/abs/1802.02611)

    Args:
        num_classes (int): the unique number of target classes.
M
michaelowenliu 已提交
39 40 41
        backbone (paddle.nn.Layer): backbone network, currently support Resnet50_vd/Resnet101_vd/Xception65.
        backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
            the first index will be taken as a low-level feature in Decoder component;
M
michaelowenliu 已提交
42 43 44 45 46
            the second one will be taken as input of ASPP component.
            Usually backbone consists of four downsampling stage, and return an output of
            each stage, so we set default (0, 3), which means taking feature map of the first
            stage in backbone as low-level feature used in Decoder, and feature map of the fourth
            stage as input of ASPP.
M
michaelowenliu 已提交
47 48 49 50
        aspp_ratios (tuple): the dilation rate using in ASSP module.
            if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
            if output_stride=8, aspp_ratios is (1, 12, 24, 36).
        aspp_out_channels (int): the output channels of ASPP module.
M
michaelowenliu 已提交
51
        pretrained (str): the path of pretrained model. Default to None.
52 53 54 55 56 57
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=(0, 3),
M
michaelowenliu 已提交
58
                 aspp_ratios=(1, 6, 12, 18),
M
michaelowenliu 已提交
59 60
                 aspp_out_channels=256,
                 pretrained=None):
61 62 63 64

        super(DeepLabV3P, self).__init__()

        self.backbone = backbone
M
michaelowenliu 已提交
65 66 67
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]
M
michaelowenliu 已提交
68

M
michaelowenliu 已提交
69 70 71
        self.head = DeepLabV3PHead(num_classes, backbone_indices,
                                   backbone_channels, aspp_ratios,
                                   aspp_out_channels)
M
michaelowenliu 已提交
72 73 74 75 76 77 78 79 80 81 82

        utils.load_entire_model(self, pretrained)

    def forward(self, input):

        feat_list = self.backbone(input)
        logit_list = self.head(feat_list)
        return [
            F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
        ]

M
michaelowenliu 已提交
83

M
michaelowenliu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96
class DeepLabV3PHead(nn.Layer):
    """
    The DeepLabV3PHead implementation based on PaddlePaddle.

    Args:
        num_classes (int): the unique number of target classes.
        backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
            the first index will be taken as a low-level feature in Decoder component;
            the second one will be taken as input of ASPP component.
            Usually backbone consists of four downsampling stage, and return an output of
            each stage, so we set default (0, 3), which means taking feature map of the first
            stage in backbone as low-level feature used in Decoder, and feature map of the fourth
            stage as input of ASPP.
M
michaelowenliu 已提交
97
        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
M
michaelowenliu 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        aspp_ratios (tuple): the dilation rate using in ASSP module.
            if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
            if output_stride=8, aspp_ratios is (1, 12, 24, 36).
        aspp_out_channels (int): the output channels of ASPP module.
        
    """

    def __init__(self,
                 num_classes,
                 backbone_indices,
                 backbone_channels,
                 aspp_ratios=(1, 6, 12, 18),
                 aspp_out_channels=256):

        super(DeepLabV3PHead, self).__init__()
M
michaelowenliu 已提交
113

M
michaelowenliu 已提交
114
        self.aspp = pyramid_pool.ASPPModule(
M
michaelowenliu 已提交
115
            aspp_ratios,
M
michaelowenliu 已提交
116
            backbone_channels[1],
M
michaelowenliu 已提交
117 118 119
            aspp_out_channels,
            sep_conv=True,
            image_pooling=True)
M
michaelowenliu 已提交
120
        self.decoder = Decoder(num_classes, backbone_channels[0])
121
        self.backbone_indices = backbone_indices
M
michaelowenliu 已提交
122
        self.init_weight()
123

M
michaelowenliu 已提交
124
    def forward(self, feat_list):
125 126 127 128 129 130 131 132 133 134

        logit_list = []
        low_level_feat = feat_list[self.backbone_indices[0]]
        x = feat_list[self.backbone_indices[1]]
        x = self.aspp(x)
        logit = self.decoder(x, low_level_feat)
        logit_list.append(logit)

        return logit_list

M
michaelowenliu 已提交
135
    def init_weight(self):
M
michaelowenliu 已提交
136
        pass
137

M
michaelowenliu 已提交
138

139 140 141 142 143
@manager.MODELS.add_component
class DeepLabV3(nn.Layer):
    """
    The DeepLabV3 implementation based on PaddlePaddle.

M
michaelowenliu 已提交
144 145
    The original article refers to
     Liang-Chieh Chen, et, al. "Rethinking Atrous Convolution for Semantic Image Segmentation"
146 147 148 149 150
     (https://arxiv.org/pdf/1706.05587.pdf)

    Args:
        Refer to DeepLabV3P above 
    """
M
michaelowenliu 已提交
151

152 153 154
    def __init__(self,
                 num_classes,
                 backbone,
M
michaelowenliu 已提交
155 156
                 pretrained=None,
                 backbone_indices=(3, ),
M
michaelowenliu 已提交
157 158
                 aspp_ratios=(1, 6, 12, 18),
                 aspp_out_channels=256):
159 160 161 162

        super(DeepLabV3, self).__init__()

        self.backbone = backbone
M
michaelowenliu 已提交
163 164 165 166 167 168 169
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]

        self.head = DeepLabV3Head(num_classes, backbone_indices,
                                  backbone_channels, aspp_ratios,
                                  aspp_out_channels)
M
michaelowenliu 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

        utils.load_entire_model(self, pretrained)

    def forward(self, input):

        feat_list = self.backbone(input)
        logit_list = self.head(feat_list)
        return [
            F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
        ]


class DeepLabV3Head(nn.Layer):
    def __init__(self,
                 num_classes,
                 backbone_indices=(3, ),
                 backbone_channels=(2048, ),
                 aspp_ratios=(1, 6, 12, 18),
                 aspp_out_channels=256):

        super(DeepLabV3Head, self).__init__()
M
michaelowenliu 已提交
191 192

        self.aspp = pyramid_pool.ASPPModule(
M
michaelowenliu 已提交
193
            aspp_ratios,
M
michaelowenliu 已提交
194
            backbone_channels[0],
M
michaelowenliu 已提交
195 196 197
            aspp_out_channels,
            sep_conv=False,
            image_pooling=True)
M
michaelowenliu 已提交
198

199
        self.cls = nn.Conv2d(
M
michaelowenliu 已提交
200
            in_channels=backbone_channels[0],
201 202 203 204
            out_channels=num_classes,
            kernel_size=1)

        self.backbone_indices = backbone_indices
M
michaelowenliu 已提交
205
        self.init_weight()
206

M
michaelowenliu 已提交
207
    def forward(self, feat_list):
208 209

        logit_list = []
M
michaelowenliu 已提交
210

211 212 213 214 215 216
        x = feat_list[self.backbone_indices[0]]
        logit = self.cls(x)
        logit_list.append(logit)

        return logit_list

M
michaelowenliu 已提交
217 218
    def init_weight(self):
        pass
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233


class Decoder(nn.Layer):
    """
    Decoder module of DeepLabV3P model

    Args:
        num_classes (int): the number of classes.
        in_channels (int): the number of input channels in decoder module.

    """

    def __init__(self, num_classes, in_channels):
        super(Decoder, self).__init__()

M
michaelowenliu 已提交
234
        self.conv_bn_relu1 = ConvBNReLU(
235 236
            in_channels=in_channels, out_channels=48, kernel_size=1)

M
michaelowenliu 已提交
237
        self.conv_bn_relu2 = DepthwiseConvBNReLU(
238
            in_channels=304, out_channels=256, kernel_size=3, padding=1)
M
michaelowenliu 已提交
239
        self.conv_bn_relu3 = DepthwiseConvBNReLU(
240 241 242 243 244 245 246 247 248 249 250 251
            in_channels=256, out_channels=256, kernel_size=3, padding=1)
        self.conv = nn.Conv2d(
            in_channels=256, out_channels=num_classes, kernel_size=1)

    def forward(self, x, low_level_feat):
        low_level_feat = self.conv_bn_relu1(low_level_feat)
        x = F.resize_bilinear(x, low_level_feat.shape[2:])
        x = paddle.concat([x, low_level_feat], axis=1)
        x = self.conv_bn_relu2(x)
        x = self.conv_bn_relu3(x)
        x = self.conv(x)
        return x