base.py 24.9 KB
Newer Older
W
wuyefeilin 已提交
1 2
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LutaoChu 已提交
3
#
W
wuyefeilin 已提交
4 5 6
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
L
LutaoChu 已提交
7 8 9
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
W
wuyefeilin 已提交
10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
LutaoChu 已提交
15 16 17 18 19 20 21 22

from __future__ import absolute_import
import paddle.fluid as fluid
import os
import numpy as np
import time
import math
import yaml
23 24
import tqdm
import cv2
L
LutaoChu 已提交
25
import copy
26
import utils.logging as logging
L
LutaoChu 已提交
27 28
from collections import OrderedDict
from os import path as osp
29 30
from utils.utils import seconds_to_hms, get_environ_info
from utils.metrics import ConfusionMatrix
31 32
import transforms.transforms as T
import utils
L
LutaoChu 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45


def dict2str(dict_input):
    out = ''
    for k, v in dict_input.items():
        try:
            v = round(float(v), 6)
        except:
            pass
        out = out + '{}={}, '.format(k, v)
    return out.strip(', ')


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
class BaseModel(object):
    def __init__(self,
                 num_classes=2,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255,
                 sync_bn=True):
        self.init_params = locals()
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.num_classes = num_classes
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.sync_bn = sync_bn

L
LutaoChu 已提交
82
        self.labels = None
83 84
        self.env_info = get_environ_info()
        if self.env_info['place'] == 'cpu':
L
LutaoChu 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            self.places = fluid.cpu_places()
        else:
            self.places = fluid.cuda_places()
        self.exe = fluid.Executor(self.places[0])
        self.train_prog = None
        self.test_prog = None
        self.parallel_train_prog = None
        self.train_inputs = None
        self.test_inputs = None
        self.train_outputs = None
        self.test_outputs = None
        self.train_data_loader = None
        self.eval_metrics = None
        # 当前模型状态
        self.status = 'Normal'

    def _get_single_card_bs(self, batch_size):
        if batch_size % len(self.places) == 0:
            return int(batch_size // len(self.places))
        else:
            raise Exception("Please support correct batch_size, \
                            which can be divided by available cards({}) in {}".
107 108 109 110 111 112
                            format(self.env_info['num'],
                                   self.env_info['place']))

    def build_net(self, mode='train'):
        """应根据不同的情况进行构建"""
        pass
L
LutaoChu 已提交
113 114

    def build_program(self):
115
        # build training network
L
LutaoChu 已提交
116 117 118 119
        self.train_inputs, self.train_outputs = self.build_net(mode='train')
        self.train_prog = fluid.default_main_program()
        startup_prog = fluid.default_startup_program()

120
        # build prediction network
L
LutaoChu 已提交
121 122 123 124 125 126 127
        self.test_prog = fluid.Program()
        with fluid.program_guard(self.test_prog, startup_prog):
            with fluid.unique_name.guard():
                self.test_inputs, self.test_outputs = self.build_net(
                    mode='test')
        self.test_prog = self.test_prog.clone(for_test=True)

128 129 130 131
    def arrange_transform(self, transforms, mode='train'):
        arrange_transform = T.ArrangeSegmenter
        if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
            transforms.transforms[-1] = arrange_transform(mode=mode)
L
LutaoChu 已提交
132
        else:
133
            transforms.transforms.append(arrange_transform(mode=mode))
L
LutaoChu 已提交
134

135 136
    def build_train_data_loader(self, dataset, batch_size):
        # init data_loader
L
LutaoChu 已提交
137 138 139 140 141 142 143 144
        if self.train_data_loader is None:
            self.train_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=list(self.train_inputs.values()),
                capacity=64,
                use_double_buffer=True,
                iterable=True)
        batch_size_each_gpu = self._get_single_card_bs(batch_size)
        self.train_data_loader.set_sample_list_generator(
145
            dataset.generator(batch_size=batch_size_each_gpu),
L
LutaoChu 已提交
146 147 148 149 150
            places=self.places)

    def net_initialize(self,
                       startup_prog=None,
                       pretrain_weights=None,
151
                       resume_weights=None):
L
LutaoChu 已提交
152 153 154
        if startup_prog is None:
            startup_prog = fluid.default_startup_program()
        self.exe.run(startup_prog)
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        if resume_weights is not None:
            logging.info("Resume weights from {}".format(resume_weights))
            if not osp.exists(resume_weights):
                raise Exception("Path {} not exists.".format(resume_weights))
            fluid.load(self.train_prog, osp.join(resume_weights, 'model'),
                       self.exe)
            # Check is path ended by path spearator
            if resume_weights[-1] == os.sep:
                resume_weights = resume_weights[0:-1]
            epoch_name = osp.basename(resume_weights)
            # If resume weights is end of digit, restore epoch status
            epoch = epoch_name.split('_')[-1]
            if epoch.isdigit():
                self.begin_epoch = int(epoch)
            else:
                raise ValueError("Resume model path is not valid!")
            logging.info("Model checkpoint loaded successfully!")

        elif pretrain_weights is not None:
L
LutaoChu 已提交
174 175
            logging.info(
                "Load pretrain weights from {}.".format(pretrain_weights))
176 177
            utils.load_pretrained_weights(self.exe, self.train_prog,
                                          pretrain_weights)
L
LutaoChu 已提交
178 179

    def get_model_info(self):
180
        # 存储相应的信息到yml文件
L
LutaoChu 已提交
181 182 183 184 185 186 187 188
        info = dict()
        info['Model'] = self.__class__.__name__
        if 'self' in self.init_params:
            del self.init_params['self']
        if '__class__' in self.init_params:
            del self.init_params['__class__']
        info['_init_params'] = self.init_params

189
        info['_Attributes'] = dict()
L
LutaoChu 已提交
190 191 192
        info['_Attributes']['num_classes'] = self.num_classes
        info['_Attributes']['labels'] = self.labels
        try:
193 194 195 196 197 198 199 200
            info['_Attributes']['eval_metric'] = dict()
            for k, v in self.eval_metrics.items():
                if isinstance(v, np.ndarray):
                    if v.size > 1:
                        v = [float(i) for i in v]
                else:
                    v = float(v)
                info['_Attributes']['eval_metric'][k] = v
L
LutaoChu 已提交
201 202 203 204 205
        except:
            pass

        if hasattr(self, 'test_transforms'):
            if self.test_transforms is not None:
206
                info['test_transforms'] = list()
L
LutaoChu 已提交
207 208 209
                for op in self.test_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
                    info['test_transforms'].append({name: attr})

        if hasattr(self, 'train_transforms'):
            if self.train_transforms is not None:
                info['train_transforms'] = list()
                for op in self.train_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['train_transforms'].append({name: attr})

        if hasattr(self, 'train_init'):
            if 'self' in self.train_init:
                del self.train_init['self']
            if 'train_reader' in self.train_init:
                del self.train_init['train_reader']
            if 'eval_reader' in self.train_init:
                del self.train_init['eval_reader']
            if 'optimizer' in self.train_init:
                del self.train_init['optimizer']
            info['train_init'] = self.train_init
L
LutaoChu 已提交
230 231 232 233 234 235 236 237
        return info

    def save_model(self, save_dir):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        model_info = self.get_model_info()
238 239 240 241

        if self.status == 'Normal':
            fluid.save(self.train_prog, osp.join(save_dir, 'model'))

L
LutaoChu 已提交
242 243 244 245 246
        model_info['status'] = self.status
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
247 248

        # The flag of model for saving successfully
L
LutaoChu 已提交
249 250 251
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model saved in {}.".format(save_dir))

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    def export_inference_model(self, save_dir):
        test_input_names = [var.name for var in list(self.test_inputs.values())]
        test_outputs = list(self.test_outputs.values())
        fluid.io.save_inference_model(
            dirname=save_dir,
            executor=self.exe,
            params_filename='__params__',
            feeded_var_names=test_input_names,
            target_vars=test_outputs,
            main_program=self.test_prog)
        model_info = self.get_model_info()
        model_info['status'] = 'Infer'

        # Save input and output descrition of model
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]

        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)

        # The flag of model for saving successfully
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model for inference deploy saved in {}.".format(save_dir))

    def default_optimizer(self,
                          learning_rate,
                          num_epochs,
                          num_steps_each_epoch,
                          lr_decay_power=0.9,
                          regularization_coeff=4e-5):
        decay_step = num_epochs * num_steps_each_epoch
        lr_decay = fluid.layers.polynomial_decay(
            learning_rate,
            decay_step,
            end_learning_rate=0,
            power=lr_decay_power)
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=regularization_coeff))
        return optimizer

    def train(self,
              num_epochs,
              train_reader,
              train_batch_size=2,
              eval_reader=None,
              eval_best_metric=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights=None,
              resume_weights=None,
              optimizer=None,
              learning_rate=0.01,
              lr_decay_power=0.9,
              regularization_coeff=4e-5,
              use_vdl=False):
        self.labels = train_reader.labels
        self.train_transforms = train_reader.transforms
        self.train_init = locals()
        self.begin_epoch = 0

        if optimizer is None:
            num_steps_each_epoch = train_reader.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                num_epochs=num_epochs,
                num_steps_each_epoch=num_steps_each_epoch,
                lr_decay_power=lr_decay_power,
                regularization_coeff=regularization_coeff)
        self.optimizer = optimizer
        self.build_program()
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            resume_weights=resume_weights)

        if self.begin_epoch >= num_epochs:
            raise ValueError(
                ("begin epoch[{}] is larger than num_epochs[{}]").format(
                    self.begin_epoch, num_epochs))

L
LutaoChu 已提交
343 344 345 346
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
347 348 349

        # add arrange op tor transforms
        self.arrange_transform(transforms=train_reader.transforms, mode='train')
L
LutaoChu 已提交
350
        self.build_train_data_loader(
351
            dataset=train_reader, batch_size=train_batch_size)
L
LutaoChu 已提交
352 353 354 355 356 357

        if eval_reader is not None:
            self.eval_transforms = eval_reader.transforms
            self.test_transforms = copy.deepcopy(eval_reader.transforms)

        lr = self.optimizer._learning_rate
358
        lr.persistable = True
L
LutaoChu 已提交
359 360 361
        if isinstance(lr, fluid.framework.Variable):
            self.train_outputs['lr'] = lr

362
        # 多卡训练
L
LutaoChu 已提交
363 364
        if self.parallel_train_prog is None:
            build_strategy = fluid.compiler.BuildStrategy()
365
            if self.env_info['place'] != 'cpu' and len(self.places) > 1:
L
LutaoChu 已提交
366 367 368
                build_strategy.sync_batch_norm = self.sync_bn
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_iteration_per_drop_scope = 1
369

L
LutaoChu 已提交
370 371 372 373 374 375 376 377 378 379
            self.parallel_train_prog = fluid.CompiledProgram(
                self.train_prog).with_data_parallel(
                    loss_name=self.train_outputs['loss'].name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)

        total_num_steps = math.floor(
            train_reader.num_samples / train_batch_size)
        num_steps = 0
        time_stat = list()
380 381 382 383 384 385 386 387 388 389
        time_train_one_epoch = None
        time_eval_one_epoch = None

        total_num_steps_eval = 0
        # eval times
        total_eval_times = math.ceil(num_epochs / save_interval_epochs)
        eval_batch_size = train_batch_size
        if eval_reader is not None:
            total_num_steps_eval = math.ceil(
                eval_reader.num_samples / eval_batch_size)
L
LutaoChu 已提交
390 391

        if use_vdl:
392 393
            from visualdl import LogWriter
            vdl_logdir = osp.join(save_dir, 'vdl_log')
L
LutaoChu 已提交
394
            log_writer = LogWriter(vdl_logdir)
395
        best_metric = -1.0
L
LutaoChu 已提交
396
        best_model_epoch = 1
397
        for i in range(self.begin_epoch, num_epochs):
L
LutaoChu 已提交
398 399
            records = list()
            step_start_time = time.time()
400
            epoch_start_time = time.time()
L
LutaoChu 已提交
401 402 403 404 405 406 407 408
            for step, data in enumerate(self.train_data_loader()):
                outputs = self.exe.run(
                    self.parallel_train_prog,
                    feed=data,
                    fetch_list=list(self.train_outputs.values()))
                outputs_avg = np.mean(np.array(outputs), axis=1)
                records.append(outputs_avg)

409 410 411 412
                # time estimated to complete the training
                currend_time = time.time()
                step_cost_time = currend_time - step_start_time
                step_start_time = currend_time
L
LutaoChu 已提交
413 414 415 416
                if len(time_stat) < 20:
                    time_stat.append(step_cost_time)
                else:
                    time_stat[num_steps % 20] = step_cost_time
417

L
LutaoChu 已提交
418 419 420 421 422 423 424
                num_steps += 1
                if num_steps % log_interval_steps == 0:
                    step_metrics = OrderedDict(
                        zip(list(self.train_outputs.keys()), outputs_avg))

                    if use_vdl:
                        for k, v in step_metrics.items():
L
LutaoChu 已提交
425
                            log_writer.add_scalar(
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
                                step=num_steps,
                                tag='train/{}'.format(k),
                                value=v)

                    # 计算剩余时间
                    avg_step_time = np.mean(time_stat)
                    if time_train_one_epoch is not None:
                        eta = (num_epochs - i - 1) * time_train_one_epoch + (
                            total_num_steps - step - 1) * avg_step_time
                    else:
                        eta = ((num_epochs - i) * total_num_steps - step -
                               1) * avg_step_time
                    if time_eval_one_epoch is not None:
                        eval_eta = (total_eval_times - i // save_interval_epochs
                                    ) * time_eval_one_epoch
                    else:
                        eval_eta = (total_eval_times - i // save_interval_epochs
                                    ) * total_num_steps_eval * avg_step_time
                    eta_str = seconds_to_hms(eta + eval_eta)

L
LutaoChu 已提交
446
                    logging.info(
447 448 449 450 451
                        "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
                        .format(i + 1, num_epochs, step + 1, total_num_steps,
                                dict2str(step_metrics), round(avg_step_time, 2),
                                eta_str))

L
LutaoChu 已提交
452 453 454 455
            train_metrics = OrderedDict(
                zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
            logging.info('[TRAIN] Epoch {} finished, {} .'.format(
                i + 1, dict2str(train_metrics)))
456
            time_train_one_epoch = time.time() - epoch_start_time
L
LutaoChu 已提交
457

458
            eval_epoch_start_time = time.time()
L
LutaoChu 已提交
459 460 461 462 463
            if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
                current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
                if not osp.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
                if eval_reader is not None:
464
                    self.eval_metrics = self.evaluate(
L
LutaoChu 已提交
465 466
                        eval_reader=eval_reader,
                        batch_size=eval_batch_size,
467
                        epoch_id=i + 1)
L
LutaoChu 已提交
468
                    # 保存最优模型
L
LutaoChu 已提交
469
                    current_metric = self.eval_metrics[eval_best_metric]
470 471
                    if current_metric > best_metric:
                        best_metric = current_metric
L
LutaoChu 已提交
472 473 474 475 476 477 478 479 480 481
                        best_model_epoch = i + 1
                        best_model_dir = osp.join(save_dir, "best_model")
                        self.save_model(save_dir=best_model_dir)
                    if use_vdl:
                        for k, v in self.eval_metrics.items():
                            if isinstance(v, list):
                                continue
                            if isinstance(v, np.ndarray):
                                if v.size > 1:
                                    continue
L
LutaoChu 已提交
482
                            log_writer.add_scalar(
483 484
                                step=num_steps,
                                tag='evaluate/{}'.format(k),
L
LutaoChu 已提交
485
                                value=v)
L
LutaoChu 已提交
486
                self.save_model(save_dir=current_save_dir)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
                time_eval_one_epoch = time.time() - eval_epoch_start_time
                if eval_reader is not None:
                    logging.info(
                        'Current evaluated best model in validation dataset is epoch_{}, {}={}'
                        .format(best_model_epoch, eval_best_metric,
                                best_metric))

    def evaluate(self, eval_reader, batch_size=1, epoch_id=None):
        """评估。

        Args:
            eval_reader (reader): 评估数据读取器。
            batch_size (int): 评估时的batch大小。默认1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            return_details (bool): 是否返回详细信息。默认False。

        Returns:
            dict: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
                'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
            tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
                包含关键字:'confusion_matrix',表示评估的混淆矩阵。
        """
        self.arrange_transform(transforms=eval_reader.transforms, mode='train')
        total_steps = math.ceil(eval_reader.num_samples * 1.0 / batch_size)
        conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
        data_generator = eval_reader.generator(
            batch_size=batch_size, drop_last=False)
        if not hasattr(self, 'parallel_test_prog'):
            self.parallel_test_prog = fluid.CompiledProgram(
                self.test_prog).with_data_parallel(
                    share_vars_from=self.parallel_train_prog)
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_reader.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
            images = images.astype(np.float32)
            labels = np.array([d[1] for d in data])
            num_samples = images.shape[0]
            if num_samples < batch_size:
                num_pad_samples = batch_size - num_samples
                pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
                images = np.concatenate([images, pad_images])
            feed_data = {'image': images}
            outputs = self.exe.run(
                self.parallel_test_prog,
                feed=feed_data,
                fetch_list=list(self.test_outputs.values()),
                return_numpy=True)
            pred = outputs[0]
            if num_samples < batch_size:
                pred = pred[0:num_samples]

            mask = labels != self.ignore_index
            conf_mat.calculate(pred=pred, label=labels, ignore=mask)
            _, iou = conf_mat.mean_iou()

            logging.debug("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
                epoch_id, step + 1, total_steps, iou))

        category_iou, miou = conf_mat.mean_iou()
        category_acc, macc = conf_mat.accuracy()
        precision, recall = conf_mat.precision_recall()

        metrics = OrderedDict(
            zip([
                'miou', 'category_iou', 'macc', 'category_acc', 'kappa',
                'precision', 'recall'
            ], [
                miou, category_iou, macc, category_acc,
                conf_mat.kappa(), precision, recall
            ]))

        logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
            epoch_id, dict2str(metrics)))
        return metrics

    def predict(self, im_file, transforms=None):
        """预测。
        Args:
            img_file(str|np.ndarray): 预测图像。
            transforms(transforms.transforms): 数据预处理操作。

        Returns:
            dict: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
                像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
        """
        if isinstance(im_file, str):
            if not osp.exists(im_file):
                raise ValueError(
                    'The Image file does not exist: {}'.format(im_file))

        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if transforms is not None:
            self.arrange_transform(transforms=transforms, mode='test')
            im, im_info = transforms(im_file)
        else:
            self.arrange_transform(transforms=self.test_transforms, mode='test')
            im, im_info = self.test_transforms(im_file)
        im = im.astype(np.float32)
        im = np.expand_dims(im, axis=0)
        result = self.exe.run(
            self.test_prog,
            feed={'image': im},
            fetch_list=list(self.test_outputs.values()))
        pred = result[0]
        logit = result[1]
        logit = np.squeeze(logit)
        logit = np.transpose(logit, (1, 2, 0))
        pred = np.squeeze(pred).astype('uint8')
        keys = list(im_info.keys())
        for k in keys[::-1]:
            if k == 'shape_before_resize':
                h, w = im_info[k][0], im_info[k][1]
                pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
                logit = cv2.resize(logit, (w, h), cv2.INTER_LINEAR)
            elif k == 'shape_before_padding':
                h, w = im_info[k][0], im_info[k][1]
                pred = pred[0:h, 0:w]
                logit = logit[0:h, 0:w, :]

        return {'label_map': pred, 'score_map': logit}