base.py 24.8 KB
Newer Older
L
LutaoChu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
import paddle.fluid as fluid
import os
import numpy as np
import time
import math
import yaml
22 23
import tqdm
import cv2
L
LutaoChu 已提交
24
import copy
25
import utils.logging as logging
L
LutaoChu 已提交
26 27
from collections import OrderedDict
from os import path as osp
28 29
from utils.utils import seconds_to_hms, get_environ_info
from utils.metrics import ConfusionMatrix
30 31
import transforms.transforms as T
import utils
L
LutaoChu 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44


def dict2str(dict_input):
    out = ''
    for k, v in dict_input.items():
        try:
            v = round(float(v), 6)
        except:
            pass
        out = out + '{}={}, '.format(k, v)
    return out.strip(', ')


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
class BaseModel(object):
    def __init__(self,
                 num_classes=2,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255,
                 sync_bn=True):
        self.init_params = locals()
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.num_classes = num_classes
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.sync_bn = sync_bn

L
LutaoChu 已提交
81
        self.labels = None
82 83
        self.env_info = get_environ_info()
        if self.env_info['place'] == 'cpu':
L
LutaoChu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            self.places = fluid.cpu_places()
        else:
            self.places = fluid.cuda_places()
        self.exe = fluid.Executor(self.places[0])
        self.train_prog = None
        self.test_prog = None
        self.parallel_train_prog = None
        self.train_inputs = None
        self.test_inputs = None
        self.train_outputs = None
        self.test_outputs = None
        self.train_data_loader = None
        self.eval_metrics = None
        # 当前模型状态
        self.status = 'Normal'

    def _get_single_card_bs(self, batch_size):
        if batch_size % len(self.places) == 0:
            return int(batch_size // len(self.places))
        else:
            raise Exception("Please support correct batch_size, \
                            which can be divided by available cards({}) in {}".
106 107 108 109 110 111
                            format(self.env_info['num'],
                                   self.env_info['place']))

    def build_net(self, mode='train'):
        """应根据不同的情况进行构建"""
        pass
L
LutaoChu 已提交
112 113

    def build_program(self):
114
        # build training network
L
LutaoChu 已提交
115 116 117 118
        self.train_inputs, self.train_outputs = self.build_net(mode='train')
        self.train_prog = fluid.default_main_program()
        startup_prog = fluid.default_startup_program()

119
        # build prediction network
L
LutaoChu 已提交
120 121 122 123 124 125 126
        self.test_prog = fluid.Program()
        with fluid.program_guard(self.test_prog, startup_prog):
            with fluid.unique_name.guard():
                self.test_inputs, self.test_outputs = self.build_net(
                    mode='test')
        self.test_prog = self.test_prog.clone(for_test=True)

127 128 129 130
    def arrange_transform(self, transforms, mode='train'):
        arrange_transform = T.ArrangeSegmenter
        if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
            transforms.transforms[-1] = arrange_transform(mode=mode)
L
LutaoChu 已提交
131
        else:
132
            transforms.transforms.append(arrange_transform(mode=mode))
L
LutaoChu 已提交
133

134 135
    def build_train_data_loader(self, dataset, batch_size):
        # init data_loader
L
LutaoChu 已提交
136 137 138 139 140 141 142 143
        if self.train_data_loader is None:
            self.train_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=list(self.train_inputs.values()),
                capacity=64,
                use_double_buffer=True,
                iterable=True)
        batch_size_each_gpu = self._get_single_card_bs(batch_size)
        self.train_data_loader.set_sample_list_generator(
144
            dataset.generator(batch_size=batch_size_each_gpu),
L
LutaoChu 已提交
145 146 147 148 149
            places=self.places)

    def net_initialize(self,
                       startup_prog=None,
                       pretrain_weights=None,
150
                       resume_weights=None):
L
LutaoChu 已提交
151 152 153
        if startup_prog is None:
            startup_prog = fluid.default_startup_program()
        self.exe.run(startup_prog)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        if resume_weights is not None:
            logging.info("Resume weights from {}".format(resume_weights))
            if not osp.exists(resume_weights):
                raise Exception("Path {} not exists.".format(resume_weights))
            fluid.load(self.train_prog, osp.join(resume_weights, 'model'),
                       self.exe)
            # Check is path ended by path spearator
            if resume_weights[-1] == os.sep:
                resume_weights = resume_weights[0:-1]
            epoch_name = osp.basename(resume_weights)
            # If resume weights is end of digit, restore epoch status
            epoch = epoch_name.split('_')[-1]
            if epoch.isdigit():
                self.begin_epoch = int(epoch)
            else:
                raise ValueError("Resume model path is not valid!")
            logging.info("Model checkpoint loaded successfully!")

        elif pretrain_weights is not None:
L
LutaoChu 已提交
173 174
            logging.info(
                "Load pretrain weights from {}.".format(pretrain_weights))
175 176
            utils.load_pretrained_weights(self.exe, self.train_prog,
                                          pretrain_weights)
L
LutaoChu 已提交
177 178

    def get_model_info(self):
179
        # 存储相应的信息到yml文件
L
LutaoChu 已提交
180 181 182 183 184 185 186 187
        info = dict()
        info['Model'] = self.__class__.__name__
        if 'self' in self.init_params:
            del self.init_params['self']
        if '__class__' in self.init_params:
            del self.init_params['__class__']
        info['_init_params'] = self.init_params

188
        info['_Attributes'] = dict()
L
LutaoChu 已提交
189 190 191
        info['_Attributes']['num_classes'] = self.num_classes
        info['_Attributes']['labels'] = self.labels
        try:
192 193 194 195 196 197 198 199
            info['_Attributes']['eval_metric'] = dict()
            for k, v in self.eval_metrics.items():
                if isinstance(v, np.ndarray):
                    if v.size > 1:
                        v = [float(i) for i in v]
                else:
                    v = float(v)
                info['_Attributes']['eval_metric'][k] = v
L
LutaoChu 已提交
200 201 202 203 204
        except:
            pass

        if hasattr(self, 'test_transforms'):
            if self.test_transforms is not None:
205
                info['test_transforms'] = list()
L
LutaoChu 已提交
206 207 208
                for op in self.test_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
                    info['test_transforms'].append({name: attr})

        if hasattr(self, 'train_transforms'):
            if self.train_transforms is not None:
                info['train_transforms'] = list()
                for op in self.train_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['train_transforms'].append({name: attr})

        if hasattr(self, 'train_init'):
            if 'self' in self.train_init:
                del self.train_init['self']
            if 'train_reader' in self.train_init:
                del self.train_init['train_reader']
            if 'eval_reader' in self.train_init:
                del self.train_init['eval_reader']
            if 'optimizer' in self.train_init:
                del self.train_init['optimizer']
            info['train_init'] = self.train_init
L
LutaoChu 已提交
229 230 231 232 233 234 235 236
        return info

    def save_model(self, save_dir):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        model_info = self.get_model_info()
237 238 239 240

        if self.status == 'Normal':
            fluid.save(self.train_prog, osp.join(save_dir, 'model'))

L
LutaoChu 已提交
241 242 243 244 245
        model_info['status'] = self.status
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
246 247

        # The flag of model for saving successfully
L
LutaoChu 已提交
248 249 250
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model saved in {}.".format(save_dir))

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    def export_inference_model(self, save_dir):
        test_input_names = [var.name for var in list(self.test_inputs.values())]
        test_outputs = list(self.test_outputs.values())
        fluid.io.save_inference_model(
            dirname=save_dir,
            executor=self.exe,
            params_filename='__params__',
            feeded_var_names=test_input_names,
            target_vars=test_outputs,
            main_program=self.test_prog)
        model_info = self.get_model_info()
        model_info['status'] = 'Infer'

        # Save input and output descrition of model
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]

        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)

        # The flag of model for saving successfully
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model for inference deploy saved in {}.".format(save_dir))

    def default_optimizer(self,
                          learning_rate,
                          num_epochs,
                          num_steps_each_epoch,
                          lr_decay_power=0.9,
                          regularization_coeff=4e-5):
        decay_step = num_epochs * num_steps_each_epoch
        lr_decay = fluid.layers.polynomial_decay(
            learning_rate,
            decay_step,
            end_learning_rate=0,
            power=lr_decay_power)
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(
                regularization_coeff=regularization_coeff))
        return optimizer

    def train(self,
              num_epochs,
              train_reader,
              train_batch_size=2,
              eval_reader=None,
              eval_best_metric=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrain_weights=None,
              resume_weights=None,
              optimizer=None,
              learning_rate=0.01,
              lr_decay_power=0.9,
              regularization_coeff=4e-5,
              use_vdl=False):
        self.labels = train_reader.labels
        self.train_transforms = train_reader.transforms
        self.train_init = locals()
        self.begin_epoch = 0

        if optimizer is None:
            num_steps_each_epoch = train_reader.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                num_epochs=num_epochs,
                num_steps_each_epoch=num_steps_each_epoch,
                lr_decay_power=lr_decay_power,
                regularization_coeff=regularization_coeff)
        self.optimizer = optimizer
        self.build_program()
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
            pretrain_weights=pretrain_weights,
            resume_weights=resume_weights)

        if self.begin_epoch >= num_epochs:
            raise ValueError(
                ("begin epoch[{}] is larger than num_epochs[{}]").format(
                    self.begin_epoch, num_epochs))

L
LutaoChu 已提交
342 343 344 345
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
346 347 348

        # add arrange op tor transforms
        self.arrange_transform(transforms=train_reader.transforms, mode='train')
L
LutaoChu 已提交
349
        self.build_train_data_loader(
350
            dataset=train_reader, batch_size=train_batch_size)
L
LutaoChu 已提交
351 352 353 354 355 356

        if eval_reader is not None:
            self.eval_transforms = eval_reader.transforms
            self.test_transforms = copy.deepcopy(eval_reader.transforms)

        lr = self.optimizer._learning_rate
357
        lr.persistable = True
L
LutaoChu 已提交
358 359 360
        if isinstance(lr, fluid.framework.Variable):
            self.train_outputs['lr'] = lr

361
        # 多卡训练
L
LutaoChu 已提交
362 363
        if self.parallel_train_prog is None:
            build_strategy = fluid.compiler.BuildStrategy()
364
            if self.env_info['place'] != 'cpu' and len(self.places) > 1:
L
LutaoChu 已提交
365 366 367
                build_strategy.sync_batch_norm = self.sync_bn
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_iteration_per_drop_scope = 1
368

L
LutaoChu 已提交
369 370 371 372 373 374 375 376 377 378
            self.parallel_train_prog = fluid.CompiledProgram(
                self.train_prog).with_data_parallel(
                    loss_name=self.train_outputs['loss'].name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)

        total_num_steps = math.floor(
            train_reader.num_samples / train_batch_size)
        num_steps = 0
        time_stat = list()
379 380 381 382 383 384 385 386 387 388
        time_train_one_epoch = None
        time_eval_one_epoch = None

        total_num_steps_eval = 0
        # eval times
        total_eval_times = math.ceil(num_epochs / save_interval_epochs)
        eval_batch_size = train_batch_size
        if eval_reader is not None:
            total_num_steps_eval = math.ceil(
                eval_reader.num_samples / eval_batch_size)
L
LutaoChu 已提交
389 390

        if use_vdl:
391 392
            from visualdl import LogWriter
            vdl_logdir = osp.join(save_dir, 'vdl_log')
L
LutaoChu 已提交
393
            log_writer = LogWriter(vdl_logdir)
394
        best_metric = -1.0
L
LutaoChu 已提交
395
        best_model_epoch = 1
396
        for i in range(self.begin_epoch, num_epochs):
L
LutaoChu 已提交
397 398
            records = list()
            step_start_time = time.time()
399
            epoch_start_time = time.time()
L
LutaoChu 已提交
400 401 402 403 404 405 406 407
            for step, data in enumerate(self.train_data_loader()):
                outputs = self.exe.run(
                    self.parallel_train_prog,
                    feed=data,
                    fetch_list=list(self.train_outputs.values()))
                outputs_avg = np.mean(np.array(outputs), axis=1)
                records.append(outputs_avg)

408 409 410 411
                # time estimated to complete the training
                currend_time = time.time()
                step_cost_time = currend_time - step_start_time
                step_start_time = currend_time
L
LutaoChu 已提交
412 413 414 415
                if len(time_stat) < 20:
                    time_stat.append(step_cost_time)
                else:
                    time_stat[num_steps % 20] = step_cost_time
416

L
LutaoChu 已提交
417 418 419 420 421 422 423
                num_steps += 1
                if num_steps % log_interval_steps == 0:
                    step_metrics = OrderedDict(
                        zip(list(self.train_outputs.keys()), outputs_avg))

                    if use_vdl:
                        for k, v in step_metrics.items():
L
LutaoChu 已提交
424
                            log_writer.add_scalar(
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
                                step=num_steps,
                                tag='train/{}'.format(k),
                                value=v)

                    # 计算剩余时间
                    avg_step_time = np.mean(time_stat)
                    if time_train_one_epoch is not None:
                        eta = (num_epochs - i - 1) * time_train_one_epoch + (
                            total_num_steps - step - 1) * avg_step_time
                    else:
                        eta = ((num_epochs - i) * total_num_steps - step -
                               1) * avg_step_time
                    if time_eval_one_epoch is not None:
                        eval_eta = (total_eval_times - i // save_interval_epochs
                                    ) * time_eval_one_epoch
                    else:
                        eval_eta = (total_eval_times - i // save_interval_epochs
                                    ) * total_num_steps_eval * avg_step_time
                    eta_str = seconds_to_hms(eta + eval_eta)

L
LutaoChu 已提交
445
                    logging.info(
446 447 448 449 450
                        "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
                        .format(i + 1, num_epochs, step + 1, total_num_steps,
                                dict2str(step_metrics), round(avg_step_time, 2),
                                eta_str))

L
LutaoChu 已提交
451 452 453 454
            train_metrics = OrderedDict(
                zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
            logging.info('[TRAIN] Epoch {} finished, {} .'.format(
                i + 1, dict2str(train_metrics)))
455
            time_train_one_epoch = time.time() - epoch_start_time
L
LutaoChu 已提交
456

457
            eval_epoch_start_time = time.time()
L
LutaoChu 已提交
458 459 460 461 462
            if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
                current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
                if not osp.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
                if eval_reader is not None:
463
                    self.eval_metrics = self.evaluate(
L
LutaoChu 已提交
464 465
                        eval_reader=eval_reader,
                        batch_size=eval_batch_size,
466
                        epoch_id=i + 1)
L
LutaoChu 已提交
467
                    # 保存最优模型
L
LutaoChu 已提交
468
                    current_metric = self.eval_metrics[eval_best_metric]
469 470
                    if current_metric > best_metric:
                        best_metric = current_metric
L
LutaoChu 已提交
471 472 473 474 475 476 477 478 479 480
                        best_model_epoch = i + 1
                        best_model_dir = osp.join(save_dir, "best_model")
                        self.save_model(save_dir=best_model_dir)
                    if use_vdl:
                        for k, v in self.eval_metrics.items():
                            if isinstance(v, list):
                                continue
                            if isinstance(v, np.ndarray):
                                if v.size > 1:
                                    continue
L
LutaoChu 已提交
481
                            log_writer.add_scalar(
482 483
                                step=num_steps,
                                tag='evaluate/{}'.format(k),
L
LutaoChu 已提交
484
                                value=v)
L
LutaoChu 已提交
485
                self.save_model(save_dir=current_save_dir)
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
                time_eval_one_epoch = time.time() - eval_epoch_start_time
                if eval_reader is not None:
                    logging.info(
                        'Current evaluated best model in validation dataset is epoch_{}, {}={}'
                        .format(best_model_epoch, eval_best_metric,
                                best_metric))

    def evaluate(self, eval_reader, batch_size=1, epoch_id=None):
        """评估。

        Args:
            eval_reader (reader): 评估数据读取器。
            batch_size (int): 评估时的batch大小。默认1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            return_details (bool): 是否返回详细信息。默认False。

        Returns:
            dict: 当return_details为False时,返回dict。包含关键字:'miou'、'category_iou'、'macc'、
                'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
            tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
                包含关键字:'confusion_matrix',表示评估的混淆矩阵。
        """
        self.arrange_transform(transforms=eval_reader.transforms, mode='train')
        total_steps = math.ceil(eval_reader.num_samples * 1.0 / batch_size)
        conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
        data_generator = eval_reader.generator(
            batch_size=batch_size, drop_last=False)
        if not hasattr(self, 'parallel_test_prog'):
            self.parallel_test_prog = fluid.CompiledProgram(
                self.test_prog).with_data_parallel(
                    share_vars_from=self.parallel_train_prog)
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_reader.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
            images = images.astype(np.float32)
            labels = np.array([d[1] for d in data])
            num_samples = images.shape[0]
            if num_samples < batch_size:
                num_pad_samples = batch_size - num_samples
                pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
                images = np.concatenate([images, pad_images])
            feed_data = {'image': images}
            outputs = self.exe.run(
                self.parallel_test_prog,
                feed=feed_data,
                fetch_list=list(self.test_outputs.values()),
                return_numpy=True)
            pred = outputs[0]
            if num_samples < batch_size:
                pred = pred[0:num_samples]

            mask = labels != self.ignore_index
            conf_mat.calculate(pred=pred, label=labels, ignore=mask)
            _, iou = conf_mat.mean_iou()

            logging.debug("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
                epoch_id, step + 1, total_steps, iou))

        category_iou, miou = conf_mat.mean_iou()
        category_acc, macc = conf_mat.accuracy()
        precision, recall = conf_mat.precision_recall()

        metrics = OrderedDict(
            zip([
                'miou', 'category_iou', 'macc', 'category_acc', 'kappa',
                'precision', 'recall'
            ], [
                miou, category_iou, macc, category_acc,
                conf_mat.kappa(), precision, recall
            ]))

        logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
            epoch_id, dict2str(metrics)))
        return metrics

    def predict(self, im_file, transforms=None):
        """预测。
        Args:
            img_file(str|np.ndarray): 预测图像。
            transforms(transforms.transforms): 数据预处理操作。

        Returns:
            dict: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
                像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
        """
        if isinstance(im_file, str):
            if not osp.exists(im_file):
                raise ValueError(
                    'The Image file does not exist: {}'.format(im_file))

        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if transforms is not None:
            self.arrange_transform(transforms=transforms, mode='test')
            im, im_info = transforms(im_file)
        else:
            self.arrange_transform(transforms=self.test_transforms, mode='test')
            im, im_info = self.test_transforms(im_file)
        im = im.astype(np.float32)
        im = np.expand_dims(im, axis=0)
        result = self.exe.run(
            self.test_prog,
            feed={'image': im},
            fetch_list=list(self.test_outputs.values()))
        pred = result[0]
        logit = result[1]
        logit = np.squeeze(logit)
        logit = np.transpose(logit, (1, 2, 0))
        pred = np.squeeze(pred).astype('uint8')
        keys = list(im_info.keys())
        for k in keys[::-1]:
            if k == 'shape_before_resize':
                h, w = im_info[k][0], im_info[k][1]
                pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
                logit = cv2.resize(logit, (w, h), cv2.INTER_LINEAR)
            elif k == 'shape_before_padding':
                h, w = im_info[k][0], im_info[k][1]
                pred = pred[0:h, 0:w]
                logit = logit[0:h, 0:w, :]

        return {'label_map': pred, 'score_map': logit}