base.py 15.3 KB
Newer Older
L
LutaoChu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
import paddle.fluid as fluid
import os
import numpy as np
import time
import math
import yaml
import copy
import json
24
import utils.logging as logging
L
LutaoChu 已提交
25 26
from collections import OrderedDict
from os import path as osp
27 28 29 30
from utils.pretrain_weights import get_pretrain_weights
import transforms.transforms as T
import utils
import __init__
L
LutaoChu 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48


def dict2str(dict_input):
    out = ''
    for k, v in dict_input.items():
        try:
            v = round(float(v), 6)
        except:
            pass
        out = out + '{}={}, '.format(k, v)
    return out.strip(', ')


class BaseAPI:
    def __init__(self):
        # 现有的CV模型都有这个属性,而这个属且也需要在eval时用到
        self.num_classes = None
        self.labels = None
49
        if __init__.env_info['place'] == 'cpu':
L
LutaoChu 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
            self.places = fluid.cpu_places()
        else:
            self.places = fluid.cuda_places()
        self.exe = fluid.Executor(self.places[0])
        self.train_prog = None
        self.test_prog = None
        self.parallel_train_prog = None
        self.train_inputs = None
        self.test_inputs = None
        self.train_outputs = None
        self.test_outputs = None
        self.train_data_loader = None
        self.eval_metrics = None
        # 若模型是从inference model加载进来的,无法调用训练接口进行训练
        self.trainable = True
        # 是否使用多卡间同步BatchNorm均值和方差
        self.sync_bn = False
        # 当前模型状态
        self.status = 'Normal'

    def _get_single_card_bs(self, batch_size):
        if batch_size % len(self.places) == 0:
            return int(batch_size // len(self.places))
        else:
            raise Exception("Please support correct batch_size, \
                            which can be divided by available cards({}) in {}".
76 77
                            format(__init__.env_info['num'],
                                   __init__.env_info['place']))
L
LutaoChu 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    def build_program(self):
        # 构建训练网络
        self.train_inputs, self.train_outputs = self.build_net(mode='train')
        self.train_prog = fluid.default_main_program()
        startup_prog = fluid.default_startup_program()

        # 构建预测网络
        self.test_prog = fluid.Program()
        with fluid.program_guard(self.test_prog, startup_prog):
            with fluid.unique_name.guard():
                self.test_inputs, self.test_outputs = self.build_net(
                    mode='test')
        self.test_prog = self.test_prog.clone(for_test=True)

    def arrange_transforms(self, transforms, mode='train'):
        # 给transforms添加arrange操作
        if transforms.transforms[-1].__class__.__name__.startswith('Arrange'):
96
            transforms.transforms[-1] = T.ArrangeSegmenter(mode=mode)
L
LutaoChu 已提交
97
        else:
98
            transforms.transforms.append(T.ArrangeSegmenter(mode=mode))
L
LutaoChu 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    def build_train_data_loader(self, reader, batch_size):
        # 初始化data_loader
        if self.train_data_loader is None:
            self.train_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=list(self.train_inputs.values()),
                capacity=64,
                use_double_buffer=True,
                iterable=True)
        batch_size_each_gpu = self._get_single_card_bs(batch_size)
        generator = reader.generator(
            batch_size=batch_size_each_gpu, drop_last=True)
        self.train_data_loader.set_sample_list_generator(
            reader.generator(batch_size=batch_size_each_gpu),
            places=self.places)

    def net_initialize(self,
                       startup_prog=None,
                       pretrain_weights=None,
                       fuse_bn=False,
                       save_dir='.',
                       sensitivities_file=None,
                       eval_metric_loss=0.05):
        if hasattr(self, 'backbone'):
            backbone = self.backbone
        else:
            backbone = self.__class__.__name__
        pretrain_weights = get_pretrain_weights(pretrain_weights, backbone,
                                                save_dir)
        if startup_prog is None:
            startup_prog = fluid.default_startup_program()
        self.exe.run(startup_prog)
        if pretrain_weights is not None:
            logging.info(
                "Load pretrain weights from {}.".format(pretrain_weights))
134 135
            utils.utils.load_pretrain_weights(self.exe, self.train_prog,
                                              pretrain_weights, fuse_bn)
L
LutaoChu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
        # 进行裁剪
        if sensitivities_file is not None:
            from .slim.prune_config import get_sensitivities
            sensitivities_file = get_sensitivities(sensitivities_file, self,
                                                   save_dir)
            from .slim.prune import get_params_ratios, prune_program
            prune_params_ratios = get_params_ratios(
                sensitivities_file, eval_metric_loss=eval_metric_loss)
            prune_program(self, prune_params_ratios)
            self.status = 'Prune'

    def get_model_info(self):
        info = dict()
        info['Model'] = self.__class__.__name__
        info['_Attributes'] = {}
        if 'self' in self.init_params:
            del self.init_params['self']
        if '__class__' in self.init_params:
            del self.init_params['__class__']
        info['_init_params'] = self.init_params

        info['_Attributes']['num_classes'] = self.num_classes
        info['_Attributes']['labels'] = self.labels
        try:
            primary_metric_key = list(self.eval_metrics.keys())[0]
            primary_metric_value = float(self.eval_metrics[primary_metric_key])
            info['_Attributes']['eval_metrics'] = {
                primary_metric_key: primary_metric_value
            }
        except:
            pass

        if hasattr(self, 'test_transforms'):
            if self.test_transforms is not None:
                info['Transforms'] = list()
                for op in self.test_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['Transforms'].append({name: attr})
        return info

    def save_model(self, save_dir):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        fluid.save(self.train_prog, osp.join(save_dir, 'model'))
        model_info = self.get_model_info()
        model_info['status'] = self.status
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
        # 评估结果保存
        if hasattr(self, 'eval_details'):
            with open(osp.join(save_dir, 'eval_details.json'), 'w') as f:
                json.dump(self.eval_details, f)

        if self.status == 'Prune':
            # 保存裁剪的shape
            shapes = {}
            for block in self.train_prog.blocks:
                for param in block.all_parameters():
                    pd_var = fluid.global_scope().find_var(param.name)
                    pd_param = pd_var.get_tensor()
                    shapes[param.name] = np.array(pd_param).shape
            with open(
                    osp.join(save_dir, 'prune.yml'), encoding='utf-8',
                    mode='w') as f:
                yaml.dump(shapes, f)

        # 模型保存成功的标志
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model saved in {}.".format(save_dir))

    def train_loop(self,
                   num_epochs,
                   train_reader,
                   train_batch_size,
                   eval_reader=None,
                   save_interval_epochs=1,
                   log_interval_steps=10,
                   save_dir='output',
                   use_vdl=False):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        if use_vdl:
            from visualdl import LogWriter
            vdl_logdir = osp.join(save_dir, 'vdl_log')
        # 给transform添加arrange操作
        self.arrange_transforms(
            transforms=train_reader.transforms, mode='train')
        # 构建train_data_loader
        self.build_train_data_loader(
            reader=train_reader, batch_size=train_batch_size)

        if eval_reader is not None:
            self.eval_transforms = eval_reader.transforms
            self.test_transforms = copy.deepcopy(eval_reader.transforms)

        # 获取实时变化的learning rate
        lr = self.optimizer._learning_rate
        if isinstance(lr, fluid.framework.Variable):
            self.train_outputs['lr'] = lr

        # 在多卡上跑训练
        if self.parallel_train_prog is None:
            build_strategy = fluid.compiler.BuildStrategy()
            build_strategy.fuse_all_optimizer_ops = False
247
            if __init__.env_info['place'] != 'cpu' and len(self.places) > 1:
L
LutaoChu 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
                build_strategy.sync_batch_norm = self.sync_bn
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_iteration_per_drop_scope = 1
            self.parallel_train_prog = fluid.CompiledProgram(
                self.train_prog).with_data_parallel(
                    loss_name=self.train_outputs['loss'].name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)

        total_num_steps = math.floor(
            train_reader.num_samples / train_batch_size)
        num_steps = 0
        time_stat = list()

        if use_vdl:
            # VisualDL component
            log_writer = LogWriter(vdl_logdir, sync_cycle=20)
            train_step_component = OrderedDict()
            eval_component = OrderedDict()

        best_accuracy_key = ""
        best_accuracy = -1.0
        best_model_epoch = 1
        for i in range(num_epochs):
            records = list()
            step_start_time = time.time()
            for step, data in enumerate(self.train_data_loader()):
                outputs = self.exe.run(
                    self.parallel_train_prog,
                    feed=data,
                    fetch_list=list(self.train_outputs.values()))
                outputs_avg = np.mean(np.array(outputs), axis=1)
                records.append(outputs_avg)

                # 训练完成剩余时间预估
                current_time = time.time()
                step_cost_time = current_time - step_start_time
                step_start_time = current_time
                if len(time_stat) < 20:
                    time_stat.append(step_cost_time)
                else:
                    time_stat[num_steps % 20] = step_cost_time
                eta = ((num_epochs - i) * total_num_steps - step -
                       1) * np.mean(time_stat)
                eta_h = math.floor(eta / 3600)
                eta_m = math.floor((eta - eta_h * 3600) / 60)
                eta_s = int(eta - eta_h * 3600 - eta_m * 60)
                eta_str = "{}:{}:{}".format(eta_h, eta_m, eta_s)

                # 每间隔log_interval_steps,输出loss信息
                num_steps += 1
                if num_steps % log_interval_steps == 0:
                    step_metrics = OrderedDict(
                        zip(list(self.train_outputs.keys()), outputs_avg))

                    if use_vdl:
                        for k, v in step_metrics.items():
                            if k not in train_step_component.keys():
                                with log_writer.mode('Each_Step_while_Training'
                                                     ) as step_logger:
                                    train_step_component[
                                        k] = step_logger.scalar(
                                            'Training: {}'.format(k))
                            train_step_component[k].add_record(num_steps, v)

                    logging.info(
                        "[TRAIN] Epoch={}/{}, Step={}/{}, {}, eta={}".format(
                            i + 1, num_epochs, step + 1, total_num_steps,
                            dict2str(step_metrics), eta_str))
            train_metrics = OrderedDict(
                zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
            logging.info('[TRAIN] Epoch {} finished, {} .'.format(
                i + 1, dict2str(train_metrics)))

            # 每间隔save_interval_epochs, 在验证集上评估和对模型进行保存
            if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
                current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
                if not osp.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
                if eval_reader is not None:
                    # 检测目前仅支持单卡评估,训练数据batch大小与显卡数量之商为验证数据batch大小。
                    eval_batch_size = train_batch_size
                    self.eval_metrics, self.eval_details = self.evaluate(
                        eval_reader=eval_reader,
                        batch_size=eval_batch_size,
                        verbose=True,
                        epoch_id=i + 1,
                        return_details=True)
                    logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
                        i + 1, dict2str(self.eval_metrics)))
                    # 保存最优模型
                    best_accuracy_key = list(self.eval_metrics.keys())[0]
                    current_accuracy = self.eval_metrics[best_accuracy_key]
                    if current_accuracy > best_accuracy:
                        best_accuracy = current_accuracy
                        best_model_epoch = i + 1
                        best_model_dir = osp.join(save_dir, "best_model")
                        self.save_model(save_dir=best_model_dir)
                    if use_vdl:
                        for k, v in self.eval_metrics.items():
                            if isinstance(v, list):
                                continue
                            if isinstance(v, np.ndarray):
                                if v.size > 1:
                                    continue
                            if k not in eval_component:
                                with log_writer.mode('Each_Epoch_on_Eval_Data'
                                                     ) as eval_logger:
                                    eval_component[k] = eval_logger.scalar(
                                        'Evaluation: {}'.format(k))
                            eval_component[k].add_record(i + 1, v)
                self.save_model(save_dir=current_save_dir)
                logging.info(
                    'Current evaluated best model in eval_reader is epoch_{}, {}={}'
                    .format(best_model_epoch, best_accuracy_key, best_accuracy))