loss.py 6.5 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import paddle.fluid as fluid
import numpy as np
import importlib
from utils.config import cfg


L
LielinJiang 已提交
23
def softmax_with_loss(logit, label, ignore_mask=None, num_classes=2, weight=None):
W
wuzewu 已提交
24 25 26 27 28 29 30 31
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    label = fluid.layers.elementwise_min(
        label, fluid.layers.assign(np.array([num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.reshape(ignore_mask, [-1, 1])
L
LielinJiang 已提交
32 33 34 35 36 37 38 39 40 41 42
    if weight is None:
        loss, probs = fluid.layers.softmax_with_cross_entropy(
            logit,
            label,
            ignore_index=cfg.DATASET.IGNORE_INDEX,
            return_softmax=True)
    else:
        label_one_hot = fluid.layers.one_hot(input=label, depth=num_classes)
        if isinstance(weight, list):
            assert len(weight) == num_classes, "weight length must equal num of classes"
            weight = fluid.layers.assign(np.array([weight], dtype='float32'))
L
LielinJiang 已提交
43 44
        elif isinstance(weight, str):
            assert weight.lower() == 'dynamic', 'if weight is string, must be dynamic!'
L
LielinJiang 已提交
45 46 47 48 49 50 51 52
            tmp = []
            total_num = fluid.layers.cast(fluid.layers.shape(label)[0], 'float32')
            for i in range(num_classes):
                cls_pixel_num = fluid.layers.reduce_sum(label_one_hot[:, i])
                ratio = total_num / (cls_pixel_num + 1)
                tmp.append(ratio)
            weight = fluid.layers.concat(tmp)
            weight = weight / fluid.layers.reduce_sum(weight) * num_classes
L
LielinJiang 已提交
53 54 55 56
        elif isinstance(weight, fluid.layers.Variable):
            pass
        else:
            raise ValueError('Expect weight is a list, string or Variable, but receive {}'.format(type(weight)))
L
LielinJiang 已提交
57 58 59 60 61 62 63 64 65
        weight = fluid.layers.reshape(weight, [1, num_classes])
        weighted_label_one_hot = fluid.layers.elementwise_mul(label_one_hot, weight)
        probs = fluid.layers.softmax(logit)
        loss = fluid.layers.cross_entropy(
            probs,
            weighted_label_one_hot,
            soft_label=True,
            ignore_index=cfg.DATASET.IGNORE_INDEX)
        weighted_label_one_hot.stop_gradient = True
W
wuzewu 已提交
66 67

    loss = loss * ignore_mask
68 69
    avg_loss = fluid.layers.mean(loss) / fluid.layers.mean(ignore_mask)

W
wuzewu 已提交
70 71 72 73
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return avg_loss

W
wuyefeilin 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
# to change, how to appicate ignore index and ignore mask
def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("dice loss is only applicable to one channel classfication")
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    label  = fluid.layers.transpose(label, [0, 2, 3, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.transpose(ignore_mask, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit = logit * ignore_mask
    label = label * ignore_mask
    reduce_dim = list(range(1, len(logit.shape)))
    inse = fluid.layers.reduce_sum(logit * label, dim=reduce_dim)
    dice_denominator = fluid.layers.reduce_sum(
        logit, dim=reduce_dim) + fluid.layers.reduce_sum(
        label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return fluid.layers.reduce_mean(dice_score)

def bce_loss(logit, label, ignore_mask=None):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("bce loss is only applicable to binary classfication")
    label = fluid.layers.cast(label, 'float32')
    loss = fluid.layers.sigmoid_cross_entropy_with_logits(
        x=logit,
        label=label,
        ignore_index=cfg.DATASET.IGNORE_INDEX,
        normalize=True) # or False
    loss = fluid.layers.reduce_sum(loss)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return loss

W
wuzewu 已提交
110

L
LielinJiang 已提交
111
def multi_softmax_with_loss(logits, label, ignore_mask=None, num_classes=2, weight=None):
W
wuzewu 已提交
112 113 114 115 116 117 118 119 120 121
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = softmax_with_loss(logit, logit_label, logit_mask,
                                     num_classes)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
L
LielinJiang 已提交
122
        avg_loss = softmax_with_loss(logits, label, ignore_mask, num_classes, weight=weight)
W
wuzewu 已提交
123 124
    return avg_loss

W
wuyefeilin 已提交
125 126 127 128 129 130 131 132 133 134 135 136
def multi_dice_loss(logits, label, ignore_mask=None):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = dice_loss(logit, logit_label, logit_mask)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = dice_loss(logits, label, ignore_mask)
    return avg_loss
W
wuzewu 已提交
137

W
wuyefeilin 已提交
138 139 140 141 142 143 144 145 146 147 148 149
def multi_bce_loss(logits, label, ignore_mask=None):
    if isinstance(logits, tuple):
        avg_loss = 0
        for i, logit in enumerate(logits):
            logit_label = fluid.layers.resize_nearest(label, logit.shape[2:])
            logit_mask = (logit_label.astype('int32') !=
                          cfg.DATASET.IGNORE_INDEX).astype('int32')
            loss = bce_loss(logit, logit_label, logit_mask)
            avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
    else:
        avg_loss = bce_loss(logits, label, ignore_mask)
    return avg_loss