lovasz_losses.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Lovasz-Softmax and Jaccard hinge loss in PaddlePaddle"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
import numpy as np


def _cumsum(x):
    y = np.array(x)
    return np.cumsum(y, axis=0)


def create_tmp_var(name, dtype, shape):
    return fluid.default_main_program().current_block().create_var(
        name=name, dtype=dtype, shape=shape)


def lovasz_grad(gt_sorted):
    """
    Computes gradient of the Lovasz extension w.r.t sorted errors
    See Alg. 1 in paper
    """
    gt_sorted = fluid.layers.squeeze(gt_sorted, axes=[1])
    gts = fluid.layers.reduce_sum(gt_sorted)
    len_gt = fluid.layers.shape(gt_sorted)

    # Acceleration is achieved by reducing the number of calls to cumsum.
    # This calculation method is equivalent to that of the original paper.
    var_one = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32')
    range_ = fluid.layers.range(1, len_gt + var_one, 1, 'int32')
    tmp_var = create_tmp_var(
        name='tmp_var', dtype=gt_sorted.dtype, shape=gt_sorted.shape)
    cumsum_ = fluid.layers.py_func(func=_cumsum, x=gt_sorted, out=tmp_var)
    intersection = gts - cumsum_
    union = intersection + range_

    jaccard = 1.0 - intersection / union
    jaccard0 = fluid.layers.slice(jaccard, axes=[0], starts=[0], ends=[1])
    jaccard1 = fluid.layers.slice(jaccard, axes=[0], starts=[1], ends=[len_gt])
    jaccard2 = fluid.layers.slice(jaccard, axes=[0], starts=[0], ends=[-1])
    jaccard = fluid.layers.concat([jaccard0, jaccard1 - jaccard2], axis=0)
    jaccard = fluid.layers.unsqueeze(jaccard, axes=[1])
    return jaccard


def lovasz_hinge(logits, labels, ignore=None):
    """
    Binary Lovasz hinge loss
      logits: [N, C, H, W] Tensor, logits at each pixel (between -\infty and +\infty)
      labels: [N, 1, H, W] Tensor, binary ground truth masks (0 or 1)
      ignore: [N, 1, H, W] Tensor. Void class labels, ignore pixels which value=0
    """
    loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore))
    return loss


def lovasz_hinge_flat(logits, labels):
    """
    Binary Lovasz hinge loss
      logits: [P] Tensor, logits at each prediction (between -\infty and +\infty)
      labels: [P] Tensor, binary ground truth labels (0 or 1)
    """
    shape = fluid.layers.shape(logits)
    y = fluid.layers.zeros_like(shape[0])

    out_var = fluid.layers.create_tensor("float32")
    with fluid.layers.control_flow.Switch() as switch:
        with switch.case(fluid.layers.equal(shape[0], y)):
            loss = fluid.layers.reduce_sum(logits) * 0.
            fluid.layers.assign(input=loss, output=out_var)
        with switch.case(fluid.layers.greater_than(shape[0], y)):
            labelsf = fluid.layers.cast(labels, logits.dtype)
            signs = labelsf * 2 - 1.
            signs.stop_gradient = True
            errors = 1.0 - fluid.layers.elementwise_mul(logits, signs)
            errors_sorted, perm = fluid.layers.argsort(
                errors, axis=0, descending=True)
            errors_sorted.stop_gradient = False
            gt_sorted = fluid.layers.gather(labelsf, perm)

            grad = lovasz_grad(gt_sorted)
            grad.stop_gradient = True
            loss = fluid.layers.reduce_sum(
                fluid.layers.relu(errors_sorted) * grad)
            fluid.layers.assign(input=loss, output=out_var)
    return out_var


def flatten_binary_scores(scores, labels, ignore=None):
    """
    Flattens predictions in the batch (binary case)
    Remove labels according to 'ignore'
    """
    scores = fluid.layers.reshape(scores, [-1, 1])
    labels = fluid.layers.reshape(labels, [-1, 1])
    labels.stop_gradient = True
    if ignore is None:
        return scores, labels
    ignore = fluid.layers.cast(ignore, 'int32')
    ignore_mask = fluid.layers.reshape(ignore, (-1, 1))
    indexs = fluid.layers.where(ignore_mask == 1)
    indexs.stop_gradient = True
    vscores = fluid.layers.gather(scores, indexs[:, 0])
    vlabels = fluid.layers.gather(labels, indexs[:, 0])
    return vscores, vlabels


def lovasz_softmax(probas, labels, classes='present', ignore=None):
    """
    Multi-class Lovasz-Softmax loss
      probas: [N, C, H, W] Tensor, class probabilities at each prediction (between 0 and 1).
      labels: [N, 1, H, W] Tensor, ground truth labels (between 0 and C - 1)
      classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
      ignore: [N, 1, H, W] Tensor. Void class labels, ignore pixels which value=0
    """
    vprobas, vlabels = flatten_probas(probas, labels, ignore)
    loss = lovasz_softmax_flat(vprobas, vlabels, classes=classes)
    return loss


def lovasz_softmax_flat(probas, labels, classes='present'):
    """
    Multi-class Lovasz-Softmax loss
      probas: [P, C] Tensor, class probabilities at each prediction (between 0 and 1)
      labels: [P] Tensor, ground truth labels (between 0 and C - 1)
      classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
    """
    C = probas.shape[1]
    losses = []
    present = []
    classes_to_sum = list(range(C)) if classes in ['all', 'present'
                                                   ] else classes
    for c in classes_to_sum:
        fg = fluid.layers.cast(labels == c, probas.dtype)
        fg.stop_gradient = True
        if classes == 'present':
            present.append(
                fluid.layers.cast(fluid.layers.reduce_sum(fg) > 0, "int64"))
        if C == 1:
            if len(classes_to_sum) > 1:
                raise ValueError('Sigmoid output possible only with 1 class')
            class_pred = probas[:, 0]
        else:
            class_pred = probas[:, c]
        errors = fluid.layers.abs(fg - class_pred)
        errors_sorted, perm = fluid.layers.argsort(
            errors, axis=0, descending=True)
        errors_sorted.stop_gradient = False

        fg_sorted = fluid.layers.gather(fg, perm)
        fg_sorted.stop_gradient = True

        grad = lovasz_grad(fg_sorted)
        grad.stop_gradient = True
        loss = fluid.layers.reduce_sum(errors_sorted * grad)

        losses.append(loss)

    if len(classes_to_sum) == 1:
        return losses[0]

    losses_tensor = fluid.layers.stack(losses)
    if classes == 'present':
        present_tensor = fluid.layers.stack(present)
        index = fluid.layers.where(present_tensor == 1)
        index.stop_gradient = True
        losses_tensor = fluid.layers.gather(losses_tensor, index[:, 0])
    loss = fluid.layers.mean(losses_tensor)
    return loss


def flatten_probas(probas, labels, ignore=None):
    """
    Flattens predictions in the batch
    """
    if len(probas.shape) == 3:
        probas = fluid.layers.unsqueeze(probas, axis=[1])
    C = probas.shape[1]
    probas = fluid.layers.transpose(probas, [0, 2, 3, 1])
    probas = fluid.layers.reshape(probas, [-1, C])
    labels = fluid.layers.reshape(labels, [-1, 1])
    if ignore is None:
        return probas, labels
    ignore = fluid.layers.cast(ignore, 'int32')
    ignore_mask = fluid.layers.reshape(ignore, [-1, 1])
    indexs = fluid.layers.where(ignore_mask == 1)
    indexs.stop_gradient = True
    vprobas = fluid.layers.gather(probas, indexs[:, 0])
    vlabels = fluid.layers.gather(labels, indexs[:, 0])
    return vprobas, vlabels