# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Lovasz-Softmax and Jaccard hinge loss in PaddlePaddle""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid import numpy as np def _cumsum(x): y = np.array(x) return np.cumsum(y, axis=0) def create_tmp_var(name, dtype, shape): return fluid.default_main_program().current_block().create_var( name=name, dtype=dtype, shape=shape) def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ gt_sorted = fluid.layers.squeeze(gt_sorted, axes=[1]) gts = fluid.layers.reduce_sum(gt_sorted) len_gt = fluid.layers.shape(gt_sorted) # Acceleration is achieved by reducing the number of calls to cumsum. # This calculation method is equivalent to that of the original paper. var_one = fluid.layers.fill_constant(shape=[1], value=1, dtype='int32') range_ = fluid.layers.range(1, len_gt + var_one, 1, 'int32') tmp_var = create_tmp_var( name='tmp_var', dtype=gt_sorted.dtype, shape=gt_sorted.shape) cumsum_ = fluid.layers.py_func(func=_cumsum, x=gt_sorted, out=tmp_var) intersection = gts - cumsum_ union = intersection + range_ jaccard = 1.0 - intersection / union jaccard0 = fluid.layers.slice(jaccard, axes=[0], starts=[0], ends=[1]) jaccard1 = fluid.layers.slice(jaccard, axes=[0], starts=[1], ends=[len_gt]) jaccard2 = fluid.layers.slice(jaccard, axes=[0], starts=[0], ends=[-1]) jaccard = fluid.layers.concat([jaccard0, jaccard1 - jaccard2], axis=0) jaccard = fluid.layers.unsqueeze(jaccard, axes=[1]) return jaccard def lovasz_hinge(logits, labels, ignore=None): """ Binary Lovasz hinge loss logits: [N, C, H, W] Tensor, logits at each pixel (between -\infty and +\infty) labels: [N, 1, H, W] Tensor, binary ground truth masks (0 or 1) ignore: [N, 1, H, W] Tensor. Void class labels, ignore pixels which value=0 """ loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore)) return loss def lovasz_hinge_flat(logits, labels): """ Binary Lovasz hinge loss logits: [P] Tensor, logits at each prediction (between -\infty and +\infty) labels: [P] Tensor, binary ground truth labels (0 or 1) """ shape = fluid.layers.shape(logits) y = fluid.layers.zeros_like(shape[0]) out_var = fluid.layers.create_tensor("float32") with fluid.layers.control_flow.Switch() as switch: with switch.case(fluid.layers.equal(shape[0], y)): loss = fluid.layers.reduce_sum(logits) * 0. fluid.layers.assign(input=loss, output=out_var) with switch.case(fluid.layers.greater_than(shape[0], y)): labelsf = fluid.layers.cast(labels, logits.dtype) signs = labelsf * 2 - 1. signs.stop_gradient = True errors = 1.0 - fluid.layers.elementwise_mul(logits, signs) errors_sorted, perm = fluid.layers.argsort( errors, axis=0, descending=True) errors_sorted.stop_gradient = False gt_sorted = fluid.layers.gather(labelsf, perm) grad = lovasz_grad(gt_sorted) grad.stop_gradient = True loss = fluid.layers.reduce_sum( fluid.layers.relu(errors_sorted) * grad) fluid.layers.assign(input=loss, output=out_var) return out_var def flatten_binary_scores(scores, labels, ignore=None): """ Flattens predictions in the batch (binary case) Remove labels according to 'ignore' """ scores = fluid.layers.reshape(scores, [-1, 1]) labels = fluid.layers.reshape(labels, [-1, 1]) labels.stop_gradient = True if ignore is None: return scores, labels ignore = fluid.layers.cast(ignore, 'int32') ignore_mask = fluid.layers.reshape(ignore, (-1, 1)) indexs = fluid.layers.where(ignore_mask == 1) indexs.stop_gradient = True vscores = fluid.layers.gather(scores, indexs[:, 0]) vlabels = fluid.layers.gather(labels, indexs[:, 0]) return vscores, vlabels def lovasz_softmax(probas, labels, classes='present', ignore=None): """ Multi-class Lovasz-Softmax loss probas: [N, C, H, W] Tensor, class probabilities at each prediction (between 0 and 1). labels: [N, 1, H, W] Tensor, ground truth labels (between 0 and C - 1) classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. ignore: [N, 1, H, W] Tensor. Void class labels, ignore pixels which value=0 """ vprobas, vlabels = flatten_probas(probas, labels, ignore) loss = lovasz_softmax_flat(vprobas, vlabels, classes=classes) return loss def lovasz_softmax_flat(probas, labels, classes='present'): """ Multi-class Lovasz-Softmax loss probas: [P, C] Tensor, class probabilities at each prediction (between 0 and 1) labels: [P] Tensor, ground truth labels (between 0 and C - 1) classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average. """ C = probas.shape[1] losses = [] present = [] classes_to_sum = list(range(C)) if classes in ['all', 'present' ] else classes for c in classes_to_sum: fg = fluid.layers.cast(labels == c, probas.dtype) fg.stop_gradient = True if classes == 'present': present.append( fluid.layers.cast(fluid.layers.reduce_sum(fg) > 0, "int64")) if C == 1: if len(classes_to_sum) > 1: raise ValueError('Sigmoid output possible only with 1 class') class_pred = probas[:, 0] else: class_pred = probas[:, c] errors = fluid.layers.abs(fg - class_pred) errors_sorted, perm = fluid.layers.argsort( errors, axis=0, descending=True) errors_sorted.stop_gradient = False fg_sorted = fluid.layers.gather(fg, perm) fg_sorted.stop_gradient = True grad = lovasz_grad(fg_sorted) grad.stop_gradient = True loss = fluid.layers.reduce_sum(errors_sorted * grad) losses.append(loss) if len(classes_to_sum) == 1: return losses[0] losses_tensor = fluid.layers.stack(losses) if classes == 'present': present_tensor = fluid.layers.stack(present) index = fluid.layers.where(present_tensor == 1) index.stop_gradient = True losses_tensor = fluid.layers.gather(losses_tensor, index[:, 0]) loss = fluid.layers.mean(losses_tensor) return loss def flatten_probas(probas, labels, ignore=None): """ Flattens predictions in the batch """ if len(probas.shape) == 3: probas = fluid.layers.unsqueeze(probas, axis=[1]) C = probas.shape[1] probas = fluid.layers.transpose(probas, [0, 2, 3, 1]) probas = fluid.layers.reshape(probas, [-1, C]) labels = fluid.layers.reshape(labels, [-1, 1]) if ignore is None: return probas, labels ignore = fluid.layers.cast(ignore, 'int32') ignore_mask = fluid.layers.reshape(ignore, [-1, 1]) indexs = fluid.layers.where(ignore_mask == 1) indexs.stop_gradient = True vprobas = fluid.layers.gather(probas, indexs[:, 0]) vlabels = fluid.layers.gather(labels, indexs[:, 0]) return vprobas, vlabels