kagle_metric.py 7.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3
"""
Do metric jobs. calculate AUC, MSE, COCP ...
"""
X
xiexionghang 已提交
4 5 6
import math
import time
import numpy as np
X
xiexionghang 已提交
7
import kagle.kagle_util
X
xiexionghang 已提交
8 9 10 11
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

class Metric(object):
X
xiexionghang 已提交
12 13
    """R 
    """
X
xiexionghang 已提交
14
    __metaclass__=abc.ABCMeta
X
xiexionghang 已提交
15 16

    def __init__(self, config):
X
xiexionghang 已提交
17
        """ """
X
xiexionghang 已提交
18 19
        pass
        
X
xiexionghang 已提交
20
    @abc.abstractmethod
X
xiexionghang 已提交
21
    def clear(self, scope, params):
X
xiexionghang 已提交
22 23 24 25 26 27
        """
        clear current value
        Args:
            scope: value container
            params: extend varilable for clear
        """
X
xiexionghang 已提交
28 29
        pass
        
X
xiexionghang 已提交
30
    @abc.abstractmethod
X
xiexionghang 已提交
31
    def calculate(self, scope, params):
X
xiexionghang 已提交
32 33 34 35 36 37
        """
        calculate result
        Args:
            scope: value container
            params: extend varilable for clear
        """
X
xiexionghang 已提交
38 39
        pass

X
xiexionghang 已提交
40
    @abc.abstractmethod
X
xiexionghang 已提交
41
    def get_result(self):
X
xiexionghang 已提交
42 43 44 45
        """
        Return:
            result(dict) : calculate result 
        """
X
xiexionghang 已提交
46 47
        pass
    
X
xiexionghang 已提交
48
    @abc.abstractmethod
X
xiexionghang 已提交
49
    def get_result_to_string(self):
X
xiexionghang 已提交
50 51 52 53
        """
        Return:
            result(string) : calculate result with string format, for output 
        """
X
xiexionghang 已提交
54 55
        pass

X
xiexionghang 已提交
56

X
xiexionghang 已提交
57
class PaddleAUCMetric(Metric):
X
xiexionghang 已提交
58 59 60
    """
    Metric For Paddle Model
    """
X
xiexionghang 已提交
61
    def __init__(self, config):
X
xiexionghang 已提交
62
        """ """
X
xiexionghang 已提交
63 64 65
        pass
    
    def clear(self, scope, params):
X
xiexionghang 已提交
66 67 68 69 70 71 72 73 74 75
        """
        Clear current metric value, usually set to zero
        Args:
            scope : paddle runtime var container
            params(dict) : 
                label : a group name for metric
                metric_dict : current metric_items in group
        Return:
            None 
        """
X
xiexionghang 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        self._result = {}
        place=fluid.CPUPlace()
        for metric_name in self._metric_dict:
            metric_config = self._metric_dict[metric_name]
            if scope.find_var(metric_config['var'].name) is None:
                continue
            metric_var = scope.var(metric_config['var'].name).get_tensor()
            data_type = 'float32'
            if 'data_type' in metric_config:
                data_type =  metric_config['data_type']
            data_array = np.zeros(metric_var._get_dims()).astype(data_type)
            metric_var.set(data_array, place)
    
    def get_metric(self, scope, metric_name):
X
xiexionghang 已提交
92 93 94 95 96
        """
        reduce metric named metric_name from all worker
        Return:
            metric reduce result
        """
X
xiexionghang 已提交
97 98 99 100 101 102 103 104 105
        metric = np.array(scope.find_var(metric_name).get_tensor())
        old_metric_shape = np.array(metric.shape)
        metric = metric.reshape(-1)
        global_metric = np.copy(metric) * 0
        fleet._role_maker._node_type_comm.Allreduce(metric, global_metric)
        global_metric = global_metric.reshape(old_metric_shape)
        return global_metric[0]
        
    def get_global_metrics(self, scope, metric_dict):
X
xiexionghang 已提交
106 107 108 109 110
        """
        reduce all metric in metric_dict from all worker
        Return:
            dict : {matric_name : metric_result}
        """
X
xiexionghang 已提交
111 112 113 114 115 116 117 118 119 120 121
        fleet._role_maker._barrier_worker()
        result = {}
        for metric_name in metric_dict:
            metric_item = metric_dict[metric_name]
            if scope.find_var(metric_item['var'].name) is None:
                result[metric_name] = None
                continue
            result[metric_name] = self.get_metric(scope, metric_item['var'].name)
        return result

    def calculate_auc(self, global_pos, global_neg):
X
xiexionghang 已提交
122 123
        """R 
        """
X
xiexionghang 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
        num_bucket = len(global_pos)
        area = 0.0
        pos = 0.0
        neg = 0.0
        new_pos = 0.0
        new_neg = 0.0
        total_ins_num = 0
        for i in xrange(num_bucket):
            index = num_bucket - 1 - i
            new_pos = pos + global_pos[index]
            total_ins_num += global_pos[index]
            new_neg = neg + global_neg[index]
            total_ins_num += global_neg[index]
            area += (new_neg - neg) * (pos + new_pos) / 2
            pos = new_pos
            neg = new_neg
        auc_value = None
        if pos * neg == 0 or total_ins_num == 0:
            auc_value = 0.5
        else:
            auc_value = area / (pos * neg)
        return auc_value

    def calculate_bucket_error(self, global_pos, global_neg):
X
xiexionghang 已提交
148 149
        """R 
        """
X
xiexionghang 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
        num_bucket = len(global_pos)
        last_ctr = -1.0
        impression_sum = 0.0
        ctr_sum = 0.0
        click_sum = 0.0
        error_sum = 0.0
        error_count = 0.0
        click = 0.0
        show = 0.0
        ctr = 0.0
        adjust_ctr = 0.0
        relative_error = 0.0
        actual_ctr = 0.0
        relative_ctr_error = 0.0
        k_max_span = 0.01
        k_relative_error_bound = 0.05
        for i in xrange(num_bucket):
            click = global_pos[i]
            show = global_pos[i] + global_neg[i]
            ctr = float(i) / num_bucket
            if abs(ctr - last_ctr) > k_max_span:
                last_ctr = ctr
                impression_sum = 0.0
                ctr_sum = 0.0
                click_sum = 0.0
            impression_sum += show
            ctr_sum += ctr * show
            click_sum += click
            if impression_sum == 0:
                continue
            adjust_ctr = ctr_sum / impression_sum
            if adjust_ctr == 0:
                continue
            relative_error = \
                           math.sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum))
            if relative_error < k_relative_error_bound:
                actual_ctr = click_sum / impression_sum
                relative_ctr_error = abs(actual_ctr / adjust_ctr - 1)
                error_sum += relative_ctr_error * impression_sum
                error_count += impression_sum
                last_ctr = -1

        bucket_error = error_sum / error_count if error_count > 0 else 0.0
        return bucket_error
        
    def calculate(self, scope, params):
X
xiexionghang 已提交
196
        """ """
X
xiexionghang 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        fleet._role_maker._barrier_worker()
        result = self.get_global_metrics(scope, self._metric_dict)
        if 'stat_pos' in result and 'stat_neg' in result:
            result['auc'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
            result['bucket_error'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
        if 'pos_ins_num' in result:
            result['actual_ctr'] = result['pos_ins_num'] / result['total_ins_num']
        if 'abserr' in result:
            result['mae'] = result['abserr'] / result['total_ins_num']
        if 'sqrerr' in result:
            result['rmse'] =  math.sqrt(result['sqrerr'] / result['total_ins_num'])
        if 'prob' in result:
            result['predict_ctr'] = result['prob'] / result['total_ins_num']
            if abs(result['predict_ctr']) > 1e-6:
                result['copc'] = result['actual_ctr'] / result['predict_ctr']

        if 'q' in result:
            result['mean_q'] = result['q'] / result['total_ins_num']
        self._result = result
        return result

    def get_result(self):
X
xiexionghang 已提交
221
        """ """
X
xiexionghang 已提交
222 223 224
        return self._result

    def get_result_to_string(self):
X
xiexionghang 已提交
225
        """ """
X
xiexionghang 已提交
226 227 228 229 230 231
        result = self.get_result()
        result_str = "%s AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f RMSE=%.6f "\
        "Actural_CTR=%.6f Predicted_CTR=%.6f COPC=%.6f MEAN Q_VALUE=%.6f Ins number=%s" % \
        (self._label, result['auc'], result['bucket_error'], result['mae'], result['rmse'], result['actual_ctr'], 
        result['predict_ctr'], result['copc'], result['mean_q'], result['total_ins_num'])
        return result_str