kagle_metric.py 7.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3
"""
Do metric jobs. calculate AUC, MSE, COCP ...
"""
X
xiexionghang 已提交
4 5 6 7 8 9 10 11
import math
import time
import numpy as np
import kagle_util
import paddle.fluid as fluid
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

class Metric(object):
X
xiexionghang 已提交
12 13
    """ """
    __metaclass__=abc.ABCMeta
X
xiexionghang 已提交
14 15

    def __init__(self, config):
X
xiexionghang 已提交
16
    """ """
X
xiexionghang 已提交
17 18
        pass
        
X
xiexionghang 已提交
19
    @abc.abstractmethod
X
xiexionghang 已提交
20
    def clear(self, scope, params):
X
xiexionghang 已提交
21 22 23 24 25 26
    """
    clear current value
    Args:
        scope: value container
        params: extend varilable for clear
    """
X
xiexionghang 已提交
27 28
        pass
        
X
xiexionghang 已提交
29
    @abc.abstractmethod
X
xiexionghang 已提交
30
    def calculate(self, scope, params):
X
xiexionghang 已提交
31 32 33 34 35 36
    """
    calculate result
    Args:
        scope: value container
        params: extend varilable for clear
    """
X
xiexionghang 已提交
37 38
        pass

X
xiexionghang 已提交
39
    @abc.abstractmethod
X
xiexionghang 已提交
40
    def get_result(self):
X
xiexionghang 已提交
41 42 43 44
    """
    Return:
        result(dict) : calculate result 
    """
X
xiexionghang 已提交
45 46
        pass
    
X
xiexionghang 已提交
47
    @abc.abstractmethod
X
xiexionghang 已提交
48
    def get_result_to_string(self):
X
xiexionghang 已提交
49 50 51 52
    """
    Return:
        result(string) : calculate result with string format, for output 
    """
X
xiexionghang 已提交
53 54 55
        pass

class PaddleAUCMetric(Metric):
X
xiexionghang 已提交
56 57 58
    """
    Metric For Paddle Model
    """
X
xiexionghang 已提交
59
    def __init__(self, config):
X
xiexionghang 已提交
60
    """ """
X
xiexionghang 已提交
61 62 63
        pass
    
    def clear(self, scope, params):
X
xiexionghang 已提交
64 65 66 67 68 69 70 71 72 73
    """
    Clear current metric value, usually set to zero
    Args:
        scope : paddle runtime var container
        params(dict) : 
            label : a group name for metric
            metric_dict : current metric_items in group
    Return:
        None 
    """
X
xiexionghang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        self._result = {}
        place=fluid.CPUPlace()
        for metric_name in self._metric_dict:
            metric_config = self._metric_dict[metric_name]
            if scope.find_var(metric_config['var'].name) is None:
                continue
            metric_var = scope.var(metric_config['var'].name).get_tensor()
            data_type = 'float32'
            if 'data_type' in metric_config:
                data_type =  metric_config['data_type']
            data_array = np.zeros(metric_var._get_dims()).astype(data_type)
            metric_var.set(data_array, place)
    
    def get_metric(self, scope, metric_name):
X
xiexionghang 已提交
90 91 92 93 94
    """
    reduce metric named metric_name from all worker
    Return:
        metric reduce result
    """
X
xiexionghang 已提交
95 96 97 98 99 100 101 102 103
        metric = np.array(scope.find_var(metric_name).get_tensor())
        old_metric_shape = np.array(metric.shape)
        metric = metric.reshape(-1)
        global_metric = np.copy(metric) * 0
        fleet._role_maker._node_type_comm.Allreduce(metric, global_metric)
        global_metric = global_metric.reshape(old_metric_shape)
        return global_metric[0]
        
    def get_global_metrics(self, scope, metric_dict):
X
xiexionghang 已提交
104 105 106 107 108
    """
    reduce all metric in metric_dict from all worker
    Return:
        dict : {matric_name : metric_result}
    """
X
xiexionghang 已提交
109 110 111 112 113 114 115 116 117 118 119
        fleet._role_maker._barrier_worker()
        result = {}
        for metric_name in metric_dict:
            metric_item = metric_dict[metric_name]
            if scope.find_var(metric_item['var'].name) is None:
                result[metric_name] = None
                continue
            result[metric_name] = self.get_metric(scope, metric_item['var'].name)
        return result

    def calculate_auc(self, global_pos, global_neg):
X
xiexionghang 已提交
120
    """ """
X
xiexionghang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        num_bucket = len(global_pos)
        area = 0.0
        pos = 0.0
        neg = 0.0
        new_pos = 0.0
        new_neg = 0.0
        total_ins_num = 0
        for i in xrange(num_bucket):
            index = num_bucket - 1 - i
            new_pos = pos + global_pos[index]
            total_ins_num += global_pos[index]
            new_neg = neg + global_neg[index]
            total_ins_num += global_neg[index]
            area += (new_neg - neg) * (pos + new_pos) / 2
            pos = new_pos
            neg = new_neg
        auc_value = None
        if pos * neg == 0 or total_ins_num == 0:
            auc_value = 0.5
        else:
            auc_value = area / (pos * neg)
        return auc_value

    def calculate_bucket_error(self, global_pos, global_neg):
X
xiexionghang 已提交
145
    """ """
X
xiexionghang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
        num_bucket = len(global_pos)
        last_ctr = -1.0
        impression_sum = 0.0
        ctr_sum = 0.0
        click_sum = 0.0
        error_sum = 0.0
        error_count = 0.0
        click = 0.0
        show = 0.0
        ctr = 0.0
        adjust_ctr = 0.0
        relative_error = 0.0
        actual_ctr = 0.0
        relative_ctr_error = 0.0
        k_max_span = 0.01
        k_relative_error_bound = 0.05
        for i in xrange(num_bucket):
            click = global_pos[i]
            show = global_pos[i] + global_neg[i]
            ctr = float(i) / num_bucket
            if abs(ctr - last_ctr) > k_max_span:
                last_ctr = ctr
                impression_sum = 0.0
                ctr_sum = 0.0
                click_sum = 0.0
            impression_sum += show
            ctr_sum += ctr * show
            click_sum += click
            if impression_sum == 0:
                continue
            adjust_ctr = ctr_sum / impression_sum
            if adjust_ctr == 0:
                continue
            relative_error = \
                           math.sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum))
            if relative_error < k_relative_error_bound:
                actual_ctr = click_sum / impression_sum
                relative_ctr_error = abs(actual_ctr / adjust_ctr - 1)
                error_sum += relative_ctr_error * impression_sum
                error_count += impression_sum
                last_ctr = -1

        bucket_error = error_sum / error_count if error_count > 0 else 0.0
        return bucket_error
        
    def calculate(self, scope, params):
X
xiexionghang 已提交
192
    """ """
X
xiexionghang 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        fleet._role_maker._barrier_worker()
        result = self.get_global_metrics(scope, self._metric_dict)
        if 'stat_pos' in result and 'stat_neg' in result:
            result['auc'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
            result['bucket_error'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
        if 'pos_ins_num' in result:
            result['actual_ctr'] = result['pos_ins_num'] / result['total_ins_num']
        if 'abserr' in result:
            result['mae'] = result['abserr'] / result['total_ins_num']
        if 'sqrerr' in result:
            result['rmse'] =  math.sqrt(result['sqrerr'] / result['total_ins_num'])
        if 'prob' in result:
            result['predict_ctr'] = result['prob'] / result['total_ins_num']
            if abs(result['predict_ctr']) > 1e-6:
                result['copc'] = result['actual_ctr'] / result['predict_ctr']

        if 'q' in result:
            result['mean_q'] = result['q'] / result['total_ins_num']
        self._result = result
        return result

    def get_result(self):
X
xiexionghang 已提交
217
    """ """
X
xiexionghang 已提交
218 219 220
        return self._result

    def get_result_to_string(self):
X
xiexionghang 已提交
221
    """ """
X
xiexionghang 已提交
222 223 224 225 226 227
        result = self.get_result()
        result_str = "%s AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f RMSE=%.6f "\
        "Actural_CTR=%.6f Predicted_CTR=%.6f COPC=%.6f MEAN Q_VALUE=%.6f Ins number=%s" % \
        (self._label, result['auc'], result['bucket_error'], result['mae'], result['rmse'], result['actual_ctr'], 
        result['predict_ctr'], result['copc'], result['mean_q'], result['total_ins_num'])
        return result_str