kagle_metric.py 6.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
import math
import time
import numpy as np
import kagle_util
import paddle.fluid as fluid
from abc import ABCMeta, abstractmethod
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

class Metric(object):
    __metaclass__=ABCMeta

    def __init__(self, config):
        pass
        
    @abstractmethod
    def clear(self, scope, params):
        pass
        
    @abstractmethod
    def calculate(self, scope, params):
        pass

    @abstractmethod
    def get_result(self):
        pass
    
    @abstractmethod
    def get_result_to_string(self):
        pass

class PaddleAUCMetric(Metric):
    def __init__(self, config):
        pass
    
    def clear(self, scope, params):
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        self._result = {}
        place=fluid.CPUPlace()
        for metric_name in self._metric_dict:
            metric_config = self._metric_dict[metric_name]
            if scope.find_var(metric_config['var'].name) is None:
                continue
            metric_var = scope.var(metric_config['var'].name).get_tensor()
            data_type = 'float32'
            if 'data_type' in metric_config:
                data_type =  metric_config['data_type']
            data_array = np.zeros(metric_var._get_dims()).astype(data_type)
            metric_var.set(data_array, place)
        pass
        
    
    def get_metric(self, scope, metric_name):
        metric = np.array(scope.find_var(metric_name).get_tensor())
        old_metric_shape = np.array(metric.shape)
        metric = metric.reshape(-1)
        global_metric = np.copy(metric) * 0
        fleet._role_maker._node_type_comm.Allreduce(metric, global_metric)
        global_metric = global_metric.reshape(old_metric_shape)
        return global_metric[0]
        
    def get_global_metrics(self, scope, metric_dict):
        fleet._role_maker._barrier_worker()
        result = {}
        for metric_name in metric_dict:
            metric_item = metric_dict[metric_name]
            if scope.find_var(metric_item['var'].name) is None:
                result[metric_name] = None
                continue
            result[metric_name] = self.get_metric(scope, metric_item['var'].name)
        return result

    def calculate_auc(self, global_pos, global_neg):
        num_bucket = len(global_pos)
        area = 0.0
        pos = 0.0
        neg = 0.0
        new_pos = 0.0
        new_neg = 0.0
        total_ins_num = 0
        for i in xrange(num_bucket):
            index = num_bucket - 1 - i
            new_pos = pos + global_pos[index]
            total_ins_num += global_pos[index]
            new_neg = neg + global_neg[index]
            total_ins_num += global_neg[index]
            area += (new_neg - neg) * (pos + new_pos) / 2
            pos = new_pos
            neg = new_neg
        auc_value = None
        if pos * neg == 0 or total_ins_num == 0:
            auc_value = 0.5
        else:
            auc_value = area / (pos * neg)
        return auc_value

    def calculate_bucket_error(self, global_pos, global_neg):
        num_bucket = len(global_pos)
        last_ctr = -1.0
        impression_sum = 0.0
        ctr_sum = 0.0
        click_sum = 0.0
        error_sum = 0.0
        error_count = 0.0
        click = 0.0
        show = 0.0
        ctr = 0.0
        adjust_ctr = 0.0
        relative_error = 0.0
        actual_ctr = 0.0
        relative_ctr_error = 0.0
        k_max_span = 0.01
        k_relative_error_bound = 0.05
        for i in xrange(num_bucket):
            click = global_pos[i]
            show = global_pos[i] + global_neg[i]
            ctr = float(i) / num_bucket
            if abs(ctr - last_ctr) > k_max_span:
                last_ctr = ctr
                impression_sum = 0.0
                ctr_sum = 0.0
                click_sum = 0.0
            impression_sum += show
            ctr_sum += ctr * show
            click_sum += click
            if impression_sum == 0:
                continue
            adjust_ctr = ctr_sum / impression_sum
            if adjust_ctr == 0:
                continue
            relative_error = \
                           math.sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum))
            if relative_error < k_relative_error_bound:
                actual_ctr = click_sum / impression_sum
                relative_ctr_error = abs(actual_ctr / adjust_ctr - 1)
                error_sum += relative_ctr_error * impression_sum
                error_count += impression_sum
                last_ctr = -1

        bucket_error = error_sum / error_count if error_count > 0 else 0.0
        return bucket_error
        
    def calculate(self, scope, params):
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        fleet._role_maker._barrier_worker()
        result = self.get_global_metrics(scope, self._metric_dict)
        if 'stat_pos' in result and 'stat_neg' in result:
            result['auc'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
            result['bucket_error'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
        if 'pos_ins_num' in result:
            result['actual_ctr'] = result['pos_ins_num'] / result['total_ins_num']
        if 'abserr' in result:
            result['mae'] = result['abserr'] / result['total_ins_num']
        if 'sqrerr' in result:
            result['rmse'] =  math.sqrt(result['sqrerr'] / result['total_ins_num'])
        if 'prob' in result:
            result['predict_ctr'] = result['prob'] / result['total_ins_num']
            if abs(result['predict_ctr']) > 1e-6:
                result['copc'] = result['actual_ctr'] / result['predict_ctr']

        if 'q' in result:
            result['mean_q'] = result['q'] / result['total_ins_num']
        self._result = result
        return result

    def get_result(self):
        return self._result

    def get_result_to_string(self):
        result = self.get_result()
        result_str = "%s AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f RMSE=%.6f "\
        "Actural_CTR=%.6f Predicted_CTR=%.6f COPC=%.6f MEAN Q_VALUE=%.6f Ins number=%s" % \
        (self._label, result['auc'], result['bucket_error'], result['mae'], result['rmse'], result['actual_ctr'], 
        result['predict_ctr'], result['copc'], result['mean_q'], result['total_ins_num'])
        return result_str