kagle_metric.py 7.6 KB
Newer Older
X
xiexionghang 已提交
1 2 3
"""
Do metric jobs. calculate AUC, MSE, COCP ...
"""
X
xiexionghang 已提交
4
import abc
X
xiexionghang 已提交
5 6 7 8
import math
import time
import numpy as np
import paddle.fluid as fluid
X
xiexionghang 已提交
9
import kagle.kagle_util as kagle_util
X
xiexionghang 已提交
10 11 12
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

class Metric(object):
X
xiexionghang 已提交
13 14
    """R 
    """
X
xiexionghang 已提交
15
    __metaclass__=abc.ABCMeta
X
xiexionghang 已提交
16 17

    def __init__(self, config):
X
xiexionghang 已提交
18
        """ """
X
xiexionghang 已提交
19 20
        pass
        
X
xiexionghang 已提交
21
    @abc.abstractmethod
X
xiexionghang 已提交
22
    def clear(self, scope, params):
X
xiexionghang 已提交
23 24 25 26 27 28
        """
        clear current value
        Args:
            scope: value container
            params: extend varilable for clear
        """
X
xiexionghang 已提交
29 30
        pass
        
X
xiexionghang 已提交
31
    @abc.abstractmethod
X
xiexionghang 已提交
32
    def calculate(self, scope, params):
X
xiexionghang 已提交
33 34 35 36 37 38
        """
        calculate result
        Args:
            scope: value container
            params: extend varilable for clear
        """
X
xiexionghang 已提交
39 40
        pass

X
xiexionghang 已提交
41
    @abc.abstractmethod
X
xiexionghang 已提交
42
    def get_result(self):
X
xiexionghang 已提交
43 44 45 46
        """
        Return:
            result(dict) : calculate result 
        """
X
xiexionghang 已提交
47 48
        pass
    
X
xiexionghang 已提交
49
    @abc.abstractmethod
X
xiexionghang 已提交
50
    def get_result_to_string(self):
X
xiexionghang 已提交
51 52 53 54
        """
        Return:
            result(string) : calculate result with string format, for output 
        """
X
xiexionghang 已提交
55 56
        pass

X
xiexionghang 已提交
57

X
xiexionghang 已提交
58
class PaddleAUCMetric(Metric):
X
xiexionghang 已提交
59 60 61
    """
    Metric For Paddle Model
    """
X
xiexionghang 已提交
62
    def __init__(self, config):
X
xiexionghang 已提交
63
        """ """
X
xiexionghang 已提交
64 65 66
        pass
    
    def clear(self, scope, params):
X
xiexionghang 已提交
67 68 69 70 71 72 73 74 75 76
        """
        Clear current metric value, usually set to zero
        Args:
            scope : paddle runtime var container
            params(dict) : 
                label : a group name for metric
                metric_dict : current metric_items in group
        Return:
            None 
        """
X
xiexionghang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        self._result = {}
        place=fluid.CPUPlace()
        for metric_name in self._metric_dict:
            metric_config = self._metric_dict[metric_name]
            if scope.find_var(metric_config['var'].name) is None:
                continue
            metric_var = scope.var(metric_config['var'].name).get_tensor()
            data_type = 'float32'
            if 'data_type' in metric_config:
                data_type =  metric_config['data_type']
            data_array = np.zeros(metric_var._get_dims()).astype(data_type)
            metric_var.set(data_array, place)
    
    def get_metric(self, scope, metric_name):
X
xiexionghang 已提交
93 94 95 96 97
        """
        reduce metric named metric_name from all worker
        Return:
            metric reduce result
        """
X
xiexionghang 已提交
98 99 100 101 102 103 104 105 106
        metric = np.array(scope.find_var(metric_name).get_tensor())
        old_metric_shape = np.array(metric.shape)
        metric = metric.reshape(-1)
        global_metric = np.copy(metric) * 0
        fleet._role_maker._node_type_comm.Allreduce(metric, global_metric)
        global_metric = global_metric.reshape(old_metric_shape)
        return global_metric[0]
        
    def get_global_metrics(self, scope, metric_dict):
X
xiexionghang 已提交
107 108 109 110 111
        """
        reduce all metric in metric_dict from all worker
        Return:
            dict : {matric_name : metric_result}
        """
X
xiexionghang 已提交
112 113 114 115 116 117 118 119 120 121 122
        fleet._role_maker._barrier_worker()
        result = {}
        for metric_name in metric_dict:
            metric_item = metric_dict[metric_name]
            if scope.find_var(metric_item['var'].name) is None:
                result[metric_name] = None
                continue
            result[metric_name] = self.get_metric(scope, metric_item['var'].name)
        return result

    def calculate_auc(self, global_pos, global_neg):
X
xiexionghang 已提交
123 124
        """R 
        """
X
xiexionghang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        num_bucket = len(global_pos)
        area = 0.0
        pos = 0.0
        neg = 0.0
        new_pos = 0.0
        new_neg = 0.0
        total_ins_num = 0
        for i in xrange(num_bucket):
            index = num_bucket - 1 - i
            new_pos = pos + global_pos[index]
            total_ins_num += global_pos[index]
            new_neg = neg + global_neg[index]
            total_ins_num += global_neg[index]
            area += (new_neg - neg) * (pos + new_pos) / 2
            pos = new_pos
            neg = new_neg
        auc_value = None
        if pos * neg == 0 or total_ins_num == 0:
            auc_value = 0.5
        else:
            auc_value = area / (pos * neg)
        return auc_value

    def calculate_bucket_error(self, global_pos, global_neg):
X
xiexionghang 已提交
149 150
        """R 
        """
X
xiexionghang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        num_bucket = len(global_pos)
        last_ctr = -1.0
        impression_sum = 0.0
        ctr_sum = 0.0
        click_sum = 0.0
        error_sum = 0.0
        error_count = 0.0
        click = 0.0
        show = 0.0
        ctr = 0.0
        adjust_ctr = 0.0
        relative_error = 0.0
        actual_ctr = 0.0
        relative_ctr_error = 0.0
        k_max_span = 0.01
        k_relative_error_bound = 0.05
        for i in xrange(num_bucket):
            click = global_pos[i]
            show = global_pos[i] + global_neg[i]
            ctr = float(i) / num_bucket
            if abs(ctr - last_ctr) > k_max_span:
                last_ctr = ctr
                impression_sum = 0.0
                ctr_sum = 0.0
                click_sum = 0.0
            impression_sum += show
            ctr_sum += ctr * show
            click_sum += click
            if impression_sum == 0:
                continue
            adjust_ctr = ctr_sum / impression_sum
            if adjust_ctr == 0:
                continue
            relative_error = \
                           math.sqrt((1 - adjust_ctr) / (adjust_ctr * impression_sum))
            if relative_error < k_relative_error_bound:
                actual_ctr = click_sum / impression_sum
                relative_ctr_error = abs(actual_ctr / adjust_ctr - 1)
                error_sum += relative_ctr_error * impression_sum
                error_count += impression_sum
                last_ctr = -1

        bucket_error = error_sum / error_count if error_count > 0 else 0.0
        return bucket_error
        
    def calculate(self, scope, params):
X
xiexionghang 已提交
197
        """ """
X
xiexionghang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        self._label = params['label']
        self._metric_dict = params['metric_dict']
        fleet._role_maker._barrier_worker()
        result = self.get_global_metrics(scope, self._metric_dict)
        if 'stat_pos' in result and 'stat_neg' in result:
            result['auc'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
            result['bucket_error'] = self.calculate_auc(result['stat_pos'], result['stat_neg'])
        if 'pos_ins_num' in result:
            result['actual_ctr'] = result['pos_ins_num'] / result['total_ins_num']
        if 'abserr' in result:
            result['mae'] = result['abserr'] / result['total_ins_num']
        if 'sqrerr' in result:
            result['rmse'] =  math.sqrt(result['sqrerr'] / result['total_ins_num'])
        if 'prob' in result:
            result['predict_ctr'] = result['prob'] / result['total_ins_num']
            if abs(result['predict_ctr']) > 1e-6:
                result['copc'] = result['actual_ctr'] / result['predict_ctr']

        if 'q' in result:
            result['mean_q'] = result['q'] / result['total_ins_num']
        self._result = result
        return result

    def get_result(self):
X
xiexionghang 已提交
222
        """ """
X
xiexionghang 已提交
223 224 225
        return self._result

    def get_result_to_string(self):
X
xiexionghang 已提交
226
        """ """
X
xiexionghang 已提交
227 228 229 230 231 232
        result = self.get_result()
        result_str = "%s AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f RMSE=%.6f "\
        "Actural_CTR=%.6f Predicted_CTR=%.6f COPC=%.6f MEAN Q_VALUE=%.6f Ins number=%s" % \
        (self._label, result['auc'], result['bucket_error'], result['mae'], result['rmse'], result['actual_ctr'], 
        result['predict_ctr'], result['copc'], result['mean_q'], result['total_ins_num'])
        return result_str