trainer.py 7.9 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiexionghang 已提交
15
import abc
T
tangwei 已提交
16
import os
X
xiexionghang 已提交
17
import time
T
tangwei 已提交
18
import sys
X
xionghang 已提交
19
import traceback
T
tangwei 已提交
20

T
tangwei 已提交
21
from paddle import fluid
T
tangwei 已提交
22

23
from paddlerec.core.utils import envs
T
tangwei 已提交
24

T
tangwei 已提交
25

C
Chengmo 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
class EngineMode:
    """
    There are various engine designed for different runing environment.
    """
    SINGLE = 1
    CLUSTER = 2
    LOCAL_CLUSTER = 3


class FleetMode:
    """
    Paddle Distributed train support: ParameterServer/Collective/PSlib
    """
    PS = 1
    COLLECTIVE = 2
    PSLIB = 3


class Device:
    """
    PaddleRec Support CPU/GPU, XPU will comming soon
    """
    CPU = 1
    GPU = 2
    # XPU =3


X
xiexionghang 已提交
53
class Trainer(object):
C
Chengmo 已提交
54 55
    """
    Trainer Base
T
tangwei 已提交
56
    """
X
xiexionghang 已提交
57
    __metaclass__ = abc.ABCMeta
T
tangwei 已提交
58

T
tangwei 已提交
59
    def __init__(self, config=None):
X
xiexionghang 已提交
60
        self._status_processor = {}
C
Chengmo 已提交
61 62 63
        self.model = None
        self.inference_models = []
        self.increment_models = []
T
tangwei 已提交
64
        self._exector_context = {}
X
xiexionghang 已提交
65
        self._context = {'status': 'uninit', 'is_exit': False}
T
tangwei 已提交
66
        self._context["config_yaml"] = config
C
Chengmo 已提交
67 68 69

        self._model = {}
        self._dataset = {}
T
tangwei 已提交
70

T
tangwei 已提交
71
        self._runner_name = envs.get_runtime_environ("mode")
C
Chengmo 已提交
72 73
        self._context["runner_name"] = self._runner_name

T
tangwei 已提交
74
        phase_names = envs.get_global_env(
T
tangwei 已提交
75
            "runner." + self._runner_name + ".phases", None)
T
tangwei 已提交
76 77 78

        _config = envs.load_yaml(config)

T
tangwei 已提交
79
        self._context["env"] = _config
T
tangwei 已提交
80 81
        self._context["dataset"] = _config.get("dataset")

T
tangwei 已提交
82 83
        phases = []
        if phase_names is None:
T
tangwei 已提交
84
            phases = _config.get("phase")
T
tangwei 已提交
85
        else:
T
tangwei 已提交
86
            for phase in _config.get("phase"):
T
tangwei 已提交
87 88 89 90
                if phase["name"] in phase_names:
                    phases.append(phase)

        self._context["phases"] = phases
C
Chengmo 已提交
91 92 93 94 95 96 97 98 99 100 101 102
        print("PaddleRec: Runner {} Begin".format(self._runner_name))
        self.which_engine()
        self.which_device()
        self.which_fleet_mode()
        self.which_executor_mode()
        self.legality_check()

    def which_device(self):
        """R
        """
        device = envs.get_global_env(
            "runner." + self._runner_name + ".device", default_value="CPU")
T
tangwei 已提交
103 104 105
        device = device.upper()

        if device == 'GPU':
C
Chengmo 已提交
106 107 108 109 110
            self.check_gpu()
            self.device = Device.GPU
            gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
            self._place = fluid.CUDAPlace(gpu_id)
            self._exe = fluid.Executor(self._place)
T
tangwei 已提交
111
        elif device == "CPU":
C
Chengmo 已提交
112 113 114 115 116
            self.device = Device.CPU
            self._place = fluid.CPUPlace()
            self._exe = fluid.Executor(self._place)
        else:
            raise ValueError("Not Support device {}".format(device))
T
tangwei 已提交
117
        self._context["device"] = device
C
Chengmo 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        self._context["exe"] = self._exe
        self._context["place"] = self._place

    def check_gpu(self):
        """
        Log error and exit when set use_gpu=true in paddlepaddle
        cpu version.
        """
        err = "GPU cannot be set as true while you are " \
            "using paddlepaddle cpu version ! \nPlease try: \n" \
            "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
            "\t2. Set device as cpu in config file to run " \
            "model on CPU"

        try:
            if not fluid.is_compiled_with_cuda():
                raise RuntimeError(err)
        except Exception as e:
            pass

    def which_engine(self):
        engine = envs.get_runtime_environ("train.trainer.engine")
        if engine.upper() == "SINGLE":
            self.engine = EngineMode.SINGLE
            self.is_fleet = False
        elif engine.upper() == "LOCAL_CLUSTER":
            self.engine = EngineMode.LOCAL_CLUSTER
            self.is_fleet = True
        elif engine.upper() == "CLUSTER":
            self.engine = EngineMode.CLUSTER
            self.is_fleet = True
        else:
            raise ValueError("Not Support Engine {}".format(engine))
        self._context["is_fleet"] = self.is_fleet
        self._context["engine"] = self.engine

    def which_fleet_mode(self):
        fleet_mode = envs.get_runtime_environ("fleet_mode")
        if fleet_mode.upper() == "PS":
            self.fleet_mode = FleetMode.PS
        elif fleet_mode.upper() == "COLLECTIVE":
            self.fleet_mode = FleetMode.COLLECTIVE
        elif fleet_mode.upper() == "PSLIB":
            self.fleet_mode = FleetMode.PSLIB
        else:
            raise ValueError("Not Support Fleet Mode {}".format(fleet_mode))

        self._context["is_pslib"] = (fleet_mode.upper() == "PSLIB")
        self._context["fleet_mode"] = fleet_mode

    def which_executor_mode(self):
        executor_mode = envs.get_runtime_environ("train.trainer.executor_mode")
        if executor_mode.upper() not in ["TRAIN", "INFER"]:
            raise ValueError("Not Support Executor Mode {}".format(
                executor_mode))
        if executor_mode.upper() == "TRAIN":
            self.is_infer = False
        else:
            self.is_infer = True
        print("Executor Mode: {}".format(executor_mode))
        self._context["is_infer"] = self.is_infer

    def legality_check(self):
        if self.device == Device.CPU:
            assert self.fleet_mode != FleetMode.COLLECTIVE, "Not Support CPU with Collective Mode"

        if self.is_infer:
            assert self.engine == EngineMode.SINGLE, "Not Support Distributed Infer "

    @abc.abstractmethod
    def processor_register(self):
        pass

X
xiexionghang 已提交
191
    def regist_context_processor(self, status_name, processor):
X
xiexionghang 已提交
192 193 194
        """
        regist a processor for specify status
        """
X
xiexionghang 已提交
195 196 197
        self._status_processor[status_name] = processor

    def context_process(self, context):
X
xiexionghang 已提交
198 199 200 201 202 203 204
        """
        select a processor to deal specify context
        Args:
            context : context with status
        Return:
            None : run a processor for this status
        """
X
xionghang 已提交
205
        status = context['status']
C
chengmo 已提交
206 207 208 209
        if status in self._status_processor:
            self._status_processor[context['status']](context)
        else:
            self.other_status_processor(context)
T
tangwei 已提交
210

X
xiexionghang 已提交
211
    def other_status_processor(self, context):
X
xiexionghang 已提交
212 213 214 215 216
        """
        if no processor match context.status, use defalut processor
        Return:
            None, just sleep in base
        """
X
xiexionghang 已提交
217
        print('unknow context_status:%s, do nothing' % context['status'])
218
        time.sleep(60)
X
xiexionghang 已提交
219

C
chengmo 已提交
220
    def handle_processor_exception(self, context, exception):
X
xionghang 已提交
221 222 223 224 225
        """
        when exception throwed from processor, will call this func to handle it 
        Return:
            bool exit_app or not
        """
C
chengmo 已提交
226 227
        print("\n--------------------------------\nPaddleRec Error Message "
              "Summary:\n--------------------------------\n")
C
chengmo 已提交
228 229 230
        print(
            'Exit PaddleRec. catch exception in precoss status: [%s], except: %s'
            % (context['status'], str(exception)))
X
xionghang 已提交
231 232
        return True

X
xiexionghang 已提交
233
    def reload_train_context(self):
X
xiexionghang 已提交
234 235 236
        """
        context maybe update timely, reload for update
        """
X
xiexionghang 已提交
237 238 239
        pass

    def run(self):
X
xiexionghang 已提交
240 241 242
        """
        keep running by statu context.
        """
X
xiexionghang 已提交
243
        while True:
C
chengmo 已提交
244 245 246 247 248 249 250 251 252
            try:
                self.reload_train_context()
                self.context_process(self._context)
                if self._context['is_exit']:
                    break
            except Exception as err:
                traceback.print_exc()
                print('Catch Exception:%s' % str(err))
                sys.stdout.flush()
C
chengmo 已提交
253
                self.handle_processor_exception(self._context, err)
C
chengmo 已提交
254
                sys.exit(type(err).__name__)