Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
cc3d47cf
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cc3d47cf
编写于
6月 10, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
windows supported
上级
9d54734c
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
45 addition
and
823 deletion
+45
-823
core/model.py
core/model.py
+3
-5
core/trainer.py
core/trainer.py
+10
-14
core/trainers/framework/network.py
core/trainers/framework/network.py
+20
-29
core/trainers/framework/runner.py
core/trainers/framework/runner.py
+5
-4
core/trainers/framework/startup.py
core/trainers/framework/startup.py
+2
-2
core/trainers/single_infer.py
core/trainers/single_infer.py
+0
-371
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+0
-391
doc/custom_reader.md
doc/custom_reader.md
+2
-2
doc/design.md
doc/design.md
+0
-1
doc/model.md
doc/model.md
+1
-2
models/treebased/tdm/tdm_startup.py
models/treebased/tdm/tdm_startup.py
+2
-2
未找到文件。
core/model.py
浏览文件 @
cc3d47cf
...
...
@@ -35,7 +35,6 @@ class ModelBase(object):
self
.
_data_loader
=
None
self
.
_infer_data_loader
=
None
self
.
_fetch_interval
=
20
self
.
_namespace
=
"train.model"
self
.
_platform
=
envs
.
get_platform
()
self
.
_init_hyper_parameters
()
self
.
_env
=
config
...
...
@@ -50,11 +49,11 @@ class ModelBase(object):
self
.
_slot_inited
=
True
dataset
=
{}
model_dict
=
{}
for
i
in
self
.
_env
[
"executor"
]
:
for
i
in
envs
.
get_global_env
(
"phase"
)
:
if
i
[
"name"
]
==
kargs
[
"name"
]:
model_dict
=
i
break
for
i
in
self
.
_env
[
"dataset"
]
:
for
i
in
envs
.
get_global_env
(
"dataset"
)
:
if
i
[
"name"
]
==
model_dict
[
"dataset_name"
]:
dataset
=
i
break
...
...
@@ -139,8 +138,7 @@ class ModelBase(object):
os
.
environ
[
"FLAGS_communicator_is_sgd_optimizer"
]
=
'0'
if
name
==
"SGD"
:
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
0.0001
,
self
.
_namespace
)
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
0.0001
)
optimizer_i
=
fluid
.
optimizer
.
SGD
(
lr
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
reg
))
elif
name
==
"ADAM"
:
...
...
core/trainer.py
浏览文件 @
cc3d47cf
...
...
@@ -64,26 +64,21 @@ class Trainer(object):
self
.
increment_models
=
[]
self
.
_exector_context
=
{}
self
.
_context
=
{
'status'
:
'uninit'
,
'is_exit'
:
False
}
self
.
_config_yaml
=
config
self
.
_context
[
"config_yaml"
]
=
self
.
_config_yaml
self
.
_context
[
"config_yaml"
]
=
config
self
.
_config
=
envs
.
load_yaml
(
config
)
self
.
_context
[
"env"
]
=
self
.
_config
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_runtime_environ
(
"mode"
)
self
.
_context
[
"runner_name"
]
=
self
.
_runner_name
phase_names
=
self
.
_config
.
get
(
phase_names
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".phases"
,
None
)
phases
=
[]
if
phase_names
is
None
:
phases
=
self
.
_config
.
get
(
"phase"
)
phases
=
envs
.
get_global_env
(
"phase"
)
else
:
for
phase
in
self
.
_config
.
get
(
"phase"
):
for
phase
in
envs
.
get_global_env
(
"phase"
):
if
phase
[
"name"
]
in
phase_names
:
phases
.
append
(
phase
)
...
...
@@ -100,19 +95,21 @@ class Trainer(object):
"""
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
,
default_value
=
"CPU"
)
if
device
.
upper
()
==
'GPU'
:
device
=
device
.
upper
()
if
device
==
'GPU'
:
self
.
check_gpu
()
self
.
device
=
Device
.
GPU
gpu_id
=
int
(
os
.
environ
.
get
(
'FLAGS_selected_gpus'
,
0
))
self
.
_place
=
fluid
.
CUDAPlace
(
gpu_id
)
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
elif
device
.
upper
()
==
"CPU"
:
elif
device
==
"CPU"
:
self
.
device
=
Device
.
CPU
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
else
:
raise
ValueError
(
"Not Support device {}"
.
format
(
device
))
self
.
_context
[
"device"
]
=
device
.
upper
()
self
.
_context
[
"device"
]
=
device
self
.
_context
[
"exe"
]
=
self
.
_exe
self
.
_context
[
"place"
]
=
self
.
_place
...
...
@@ -130,7 +127,6 @@ class Trainer(object):
try
:
if
not
fluid
.
is_compiled_with_cuda
():
raise
RuntimeError
(
err
)
sys
.
exit
(
1
)
except
Exception
as
e
:
pass
...
...
core/trainers/framework/network.py
浏览文件 @
cc3d47cf
...
...
@@ -58,11 +58,9 @@ class SingleNetwork(NetworkBase):
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
context
[
"env"
][
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
context
[
"env"
])
model_path
=
model_dict
[
"model"
]
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
None
)
if
context
[
"is_infer"
]:
model
.
_infer_data_var
=
model
.
input_data
(
...
...
@@ -97,7 +95,7 @@ class SingleNetwork(NetworkBase):
"default_main_program"
]
=
train_program
.
clone
()
context
[
"dataset"
]
=
{}
for
dataset
in
context
[
"env"
][
"dataset"
]
:
for
dataset
in
envs
.
get_global_env
(
"dataset"
)
:
if
dataset
[
"type"
]
!=
"DataLoader"
:
dataset_class
=
QueueDataset
(
context
)
context
[
"dataset"
][
dataset
[
...
...
@@ -114,19 +112,17 @@ class PSNetwork(NetworkBase):
def
build_network
(
self
,
context
):
context
[
"model"
]
=
{}
if
len
(
context
[
"env"
][
"phase"
]
)
>
1
:
if
len
(
envs
.
get_global_env
(
"phase"
)
)
>
1
:
warnings
.
warn
(
"Cluster Train Only Support One Phase."
,
category
=
UserWarning
,
stacklevel
=
2
)
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
context
[
"model"
][
model_dict
[
"name"
]]
=
{}
dataset_name
=
model_dict
[
"dataset_name"
]
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
context
[
"env"
][
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
context
[
"env"
])
model_path
=
model_dict
[
"model"
]
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
None
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
...
...
@@ -155,7 +151,7 @@ class PSNetwork(NetworkBase):
else
:
context
[
"fleet"
].
init_worker
()
context
[
"dataset"
]
=
{}
for
dataset
in
context
[
"env"
][
"dataset"
]
:
for
dataset
in
envs
.
get_global_env
(
"dataset"
)
:
if
dataset
[
"type"
]
!=
"DataLoader"
:
dataset_class
=
QueueDataset
(
context
)
context
[
"dataset"
][
dataset
[
...
...
@@ -201,12 +197,12 @@ class PslibNetwork(NetworkBase):
def
build_network
(
self
,
context
):
context
[
"model"
]
=
{}
if
len
(
context
[
"env"
][
"phase"
]
)
>
1
:
if
len
(
envs
.
get_global_env
(
"phase"
)
)
>
1
:
warnings
.
warn
(
"Cluster Train Only Support One Phase."
,
category
=
UserWarning
,
stacklevel
=
2
)
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
...
...
@@ -216,12 +212,9 @@ class PslibNetwork(NetworkBase):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
context
[
"model"
][
model_dict
[
"name"
]]
=
{}
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
context
[
"env"
][
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
context
[
"env"
])
model_path
=
model_dict
[
"model"
]
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
None
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
...
...
@@ -250,7 +243,7 @@ class PslibNetwork(NetworkBase):
self
.
_server
(
context
)
else
:
context
[
"dataset"
]
=
{}
for
dataset
in
context
[
"env"
][
"dataset"
]
:
for
dataset
in
envs
.
get_global_env
(
"dataset"
)
:
if
dataset
[
"type"
]
!=
"DataLoader"
:
dataset_class
=
QueueDataset
(
context
)
context
[
"dataset"
][
dataset
[
...
...
@@ -270,12 +263,12 @@ class CollectiveNetwork(NetworkBase):
def
build_network
(
self
,
context
):
context
[
"model"
]
=
{}
if
len
(
context
[
"env"
][
"phase"
]
)
>
1
:
if
len
(
envs
.
get_global_env
(
"phase"
)
)
>
1
:
warnings
.
warn
(
"Cluster Train Only Support One Phase."
,
category
=
UserWarning
,
stacklevel
=
2
)
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
context
[
"model"
][
model_dict
[
"name"
]]
=
{}
dataset_name
=
model_dict
[
"dataset_name"
]
...
...
@@ -284,11 +277,9 @@ class CollectiveNetwork(NetworkBase):
scope
=
fluid
.
Scope
()
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
context
[
"env"
][
"workspace"
]))
model_path
=
model_dict
[
"model"
]
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
context
[
"env"
]
)
"Model"
)(
None
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
...
...
@@ -314,7 +305,7 @@ class CollectiveNetwork(NetworkBase):
"default_main_program"
]
=
train_program
context
[
"dataset"
]
=
{}
for
dataset
in
context
[
"env"
][
"dataset"
]
:
for
dataset
in
envs
.
get_global_env
(
"dataset"
)
:
if
dataset
[
"type"
]
!=
"DataLoader"
:
dataset_class
=
QueueDataset
(
context
)
context
[
"dataset"
][
dataset
[
...
...
core/trainers/framework/runner.py
浏览文件 @
cc3d47cf
...
...
@@ -40,6 +40,7 @@ class RunnerBase(object):
def
_run
(
self
,
context
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
,
context
)
else
:
...
...
@@ -309,7 +310,7 @@ class PSRunner(RunnerBase):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".epochs"
))
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
for
epoch
in
range
(
epochs
):
begin_time
=
time
.
time
()
self
.
_run
(
context
,
model_dict
)
...
...
@@ -336,7 +337,7 @@ class CollectiveRunner(RunnerBase):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".epochs"
))
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
for
epoch
in
range
(
epochs
):
begin_time
=
time
.
time
()
self
.
_run
(
context
,
model_dict
)
...
...
@@ -361,7 +362,7 @@ class PslibRunner(RunnerBase):
def
run
(
self
,
context
):
context
[
"fleet"
].
init_worker
()
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".epochs"
))
...
...
@@ -382,7 +383,7 @@ class PslibRunner(RunnerBase):
day = begin_day + datetime.timedelta(days=day, hours=hour)
day_s = day.strftime('%Y%m%d/%H')
for dataset in
context["env"]["dataset"]
:
for dataset in
envs.get_global_env("dataset")
:
if dataset["type"] != "DataLoader":
name = dataset["name"]
train_data_path = envs.get_global_env(name +
...
...
core/trainers/framework/startup.py
浏览文件 @
cc3d47cf
...
...
@@ -73,7 +73,7 @@ class PSStartup(StartupBase):
pass
def
startup
(
self
,
context
):
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
with
fluid
.
scope_guard
(
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]):
train_prog
=
context
[
"model"
][
model_dict
[
"name"
]][
"main_program"
]
...
...
@@ -91,7 +91,7 @@ class CollectiveStartup(StartupBase):
pass
def
startup
(
self
,
context
):
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
with
fluid
.
scope_guard
(
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]):
train_prog
=
context
[
"model"
][
model_dict
[
"name"
]][
"default_main_program"
]
...
...
core/trainers/single_infer.py
已删除
100755 → 0
浏览文件 @
9d54734c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
json
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.utils
import
dataloader_instance
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleInfer
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
if
sparse_slots
==
""
:
sparse_slots
=
"?"
if
dense_slots
==
""
:
dense_slots
=
"?"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"?"
),
dense_slots
.
replace
(
" "
,
"?"
),
str
(
padding
))
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"phase"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
_infer_data_var
dataset
.
set_use_var
(
inputs
)
break
return
dataset
def
_get_dataloader
(
self
,
dataset_name
,
dataloader
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
else
:
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
if
type_name
==
"DataLoader"
:
return
None
else
:
return
self
.
_get_dataset
(
dataset_name
)
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
5
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_infer_data_var
=
model
.
input_data
(
is_infer
=
True
,
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
True
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_infer_data_var
,
True
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
self
.
_model
[
model_dict
[
"name"
]][
4
]
=
train_program
.
clone
()
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".epochs"
))
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"phase"
]:
if
j
==
0
:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
0
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
load
()
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
4
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
save
(
j
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics
=
model_class
.
get_infer_results
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
infer_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
program
=
self
.
_model
[
model_name
][
0
].
clone
()
fetch_vars
=
[]
fetch_alias
=
[]
metrics
=
model_class
.
get_infer_results
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
metrics_indexes
=
dict
()
for
name
,
var
in
metrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_indexes
[
var
.
name
]
=
len
(
metrics_varnames
)
-
1
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_model
[
model_name
][
3
].
_data_loader
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
infer_results
=
[]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
,
return_numpy
=
False
)
metrics
=
[
batch_id
]
metrics
.
extend
(
metrics_rets
)
batch_infer_result
=
{}
for
k
,
v
in
metrics_indexes
.
items
():
batch_infer_result
[
k
]
=
np
.
array
(
metrics_rets
[
v
]).
tolist
()
infer_results
.
append
(
batch_infer_result
)
if
batch_id
%
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
with
open
(
model_dict
[
'save_path'
],
'w'
)
as
fout
:
json
.
dump
(
infer_results
,
fout
)
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
def
load
(
self
,
is_fleet
=
False
):
name
=
"runner."
+
self
.
_runner_name
+
"."
dirname
=
envs
.
get_global_env
(
name
+
"init_model_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"single_infer going to load "
,
dirname
)
if
is_fleet
:
fleet
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
load_persistables
(
self
.
_exe
,
dirname
)
def
save
(
self
,
epoch_id
,
is_fleet
=
False
):
def
need_save
(
epoch_id
,
epoch_interval
,
is_last
=
False
):
if
is_last
:
return
True
if
epoch_id
==
-
1
:
return
False
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_inference_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
None
)
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
None
)
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
name
+
"save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_inference_model
(
self
.
_exe
,
dirname
,
feed_varnames
,
fetch_vars
)
else
:
fluid
.
io
.
save_inference_model
(
dirname
,
feed_varnames
,
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
name
+
"save_checkpoint_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
save_persistables
(
self
.
_exe
,
dirname
)
save_persistables
()
save_inference_model
()
core/trainers/single_trainer.py
已删除
100755 → 0
浏览文件 @
9d54734c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.utils
import
dataloader_instance
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleTrainer
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
self
.
_runner_name
=
envs
.
get_global_env
(
"mode"
)
device
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
if
sparse_slots
==
""
and
dense_slots
==
""
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"TRAIN"
,
self
.
_config_yaml
)
else
:
if
sparse_slots
==
""
:
sparse_slots
=
"?"
if
dense_slots
==
""
:
dense_slots
=
"?"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"?"
),
dense_slots
.
replace
(
" "
,
"?"
),
str
(
padding
))
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"phase"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
_data_var
dataset
.
set_use_var
(
inputs
)
break
return
dataset
def
_get_dataloader
(
self
,
dataset_name
,
dataloader
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
name
+
"data_converter"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
if
sparse_slots
==
""
and
dense_slots
==
""
:
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
else
:
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
,
""
).
strip
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
,
""
).
strip
()
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
if
type_name
==
"DataLoader"
:
return
None
else
:
return
self
.
_get_dataset
(
dataset_name
)
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
5
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
with
fluid
.
scope_guard
(
scope
):
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
(
is_infer
=
False
)
self
.
_get_dataloader
(
dataset_name
,
model
.
_data_loader
)
model
.
net
(
model
.
_data_var
,
False
)
optimizer
=
model
.
optimizer
()
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
self
.
_model
[
model_dict
[
"name"
]][
4
]
=
train_program
.
clone
()
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"phase"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".epochs"
))
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"phase"
]:
if
j
==
0
:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
0
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
load
()
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
train_prog
=
self
.
_model
[
model_dict
[
"name"
]][
4
]
startup_prog
=
self
.
_model
[
model_dict
[
"name"
]][
1
]
with
fluid
.
program_guard
(
train_prog
,
startup_prog
):
self
.
save
(
j
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
threads
=
model_dict
.
get
(
"thread_num"
,
1
)
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
thread
=
threads
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
program
=
self
.
_model
[
model_name
][
0
].
clone
()
_build_strategy
=
fluid
.
BuildStrategy
()
_exe_strategy
=
fluid
.
ExecutionStrategy
()
# 0: kCoeffNumDevice; 1: One; 2: Customized
_gradient_scale_strategy
=
model_dict
.
get
(
"gradient_scale_strategy"
,
0
)
if
_gradient_scale_strategy
==
0
:
gradient_scale_strategy
=
fluid
.
BuildStrategy
.
GradientScaleStrategy
.
CoeffNumDevice
elif
_gradient_scale_strategy
==
1
:
gradient_scale_strategy
=
fluid
.
BuildStrategy
.
GradientScaleStrategy
.
One
elif
_gradient_scale_strategy
==
2
:
gradient_scale_strategy
=
fluid
.
BuildStrategy
.
GradientScaleStrategy
.
Customized
else
:
raise
ValueError
(
"Unsurpported config. gradient_scale_strategy must be one of [0, 1, 2]."
)
_build_strategy
.
gradient_scale_strategy
=
gradient_scale_strategy
if
"thread_num"
in
model_dict
and
model_dict
[
"thread_num"
]
>
1
:
_build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
_exe_strategy
.
num_threads
=
model_dict
[
"thread_num"
]
os
.
environ
[
'CPU_NUM'
]
=
str
(
_exe_strategy
.
num_threads
)
program
=
fluid
.
compiler
.
CompiledProgram
(
program
).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
,
build_strategy
=
_build_strategy
,
exec_strategy
=
_exe_strategy
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
int
(
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".print_interval"
,
20
))
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
metrics
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_model
[
model_name
][
3
].
_data_loader
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
def
load
(
self
,
is_fleet
=
False
):
dirname
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".init_model_path"
,
None
)
load_vars
=
envs
.
get_global_env
(
"runner."
+
self
.
_runner_name
+
".load_vars"
,
None
)
def
name_has_embedding
(
var
):
res
=
False
for
var_name
in
load_vars
:
if
var_name
==
var
.
name
:
return
True
return
res
if
dirname
is
None
or
dirname
==
""
:
return
print
(
"going to load "
,
dirname
)
if
is_fleet
:
fleet
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
if
load_vars
is
None
or
len
(
load_vars
)
==
0
:
fluid
.
io
.
load_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
load_vars
(
self
.
_exe
,
dirname
,
predicate
=
name_has_embedding
)
def
save
(
self
,
epoch_id
,
is_fleet
=
False
):
def
need_save
(
epoch_id
,
epoch_interval
,
is_last
=
False
):
if
is_last
:
return
True
if
epoch_id
==
-
1
:
return
False
return
epoch_id
%
epoch_interval
==
0
def
save_inference_model
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_inference_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
feed_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_feed_varnames"
,
[])
fetch_varnames
=
envs
.
get_global_env
(
name
+
"save_inference_fetch_varnames"
,
[])
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
or
fetch_varnames
==
""
or
\
len
(
feed_varnames
)
==
0
or
len
(
fetch_varnames
)
==
0
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
dirname
=
envs
.
get_global_env
(
name
+
"save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_inference_model
(
self
.
_exe
,
dirname
,
feed_varnames
,
fetch_vars
)
else
:
fluid
.
io
.
save_inference_model
(
dirname
,
feed_varnames
,
fetch_vars
,
self
.
_exe
)
def
save_persistables
():
name
=
"runner."
+
self
.
_runner_name
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_checkpoint_interval"
,
-
1
))
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
dirname
=
envs
.
get_global_env
(
name
+
"save_checkpoint_path"
,
None
)
if
dirname
is
None
or
dirname
==
""
:
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
fleet
.
save_persistables
(
self
.
_exe
,
dirname
)
else
:
fluid
.
io
.
save_persistables
(
self
.
_exe
,
dirname
)
save_persistables
()
save_inference_model
()
doc/custom_reader.md
浏览文件 @
cc3d47cf
...
...
@@ -208,7 +208,7 @@ CTR-DNN训练及测试数据集选用[Display Advertising Challenge](https://www
稀疏参数输入的定义:
```
python
def
sparse_inputs
():
ids
=
envs
.
get_global_env
(
"hyper_parameters.sparse_inputs_slots"
,
None
,
self
.
_namespace
)
ids
=
envs
.
get_global_env
(
"hyper_parameters.sparse_inputs_slots"
,
None
)
sparse_input_ids
=
[
fluid
.
layers
.
data
(
name
=
"S"
+
str
(
i
),
...
...
@@ -222,7 +222,7 @@ def sparse_inputs():
稠密参数输入的定义:
```
python
def
dense_input
():
dim
=
envs
.
get_global_env
(
"hyper_parameters.dense_input_dim"
,
None
,
self
.
_namespace
)
dim
=
envs
.
get_global_env
(
"hyper_parameters.dense_input_dim"
,
None
)
dense_input_var
=
fluid
.
layers
.
data
(
name
=
"D"
,
shape
=
[
dim
],
...
...
doc/design.md
浏览文件 @
cc3d47cf
...
...
@@ -139,7 +139,6 @@ class Model(object):
self
.
_data_loader
=
None
self
.
_infer_data_loader
=
None
self
.
_fetch_interval
=
20
self
.
_namespace
=
"train.model"
self
.
_platform
=
envs
.
get_platform
()
def
get_inputs
(
self
):
...
...
doc/model.md
浏览文件 @
cc3d47cf
...
...
@@ -24,8 +24,7 @@ hyper_parameters:
```
python
if
name
==
"SGD"
:
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
0.0001
,
self
.
_namespace
)
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
0.0001
)
optimizer_i
=
fluid
.
optimizer
.
SGD
(
lr
,
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
reg
))
elif
name
==
"ADAM"
:
...
...
models/treebased/tdm/tdm_startup.py
浏览文件 @
cc3d47cf
...
...
@@ -47,7 +47,7 @@ class Startup(StartupBase):
def
_single_startup
(
self
,
context
):
load_tree_from_numpy
=
envs
.
get_global_env
(
"hyper_parameters.tree.load_tree_from_numpy"
,
False
)
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
with
fluid
.
scope_guard
(
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]):
context
[
"exe"
].
run
(
context
[
"model"
][
model_dict
[
"name"
]][
"startup_program"
])
...
...
@@ -106,7 +106,7 @@ class Startup(StartupBase):
warmup_model_path
=
envs
.
get_global_env
(
"runner."
+
context
[
"runner_name"
]
+
".init_model_path"
,
None
)
assert
warmup_model_path
!=
None
,
"set runner.init_model_path for loading model"
model_dict
=
context
[
"env"
][
"phase"
]
[
0
]
model_dict
=
envs
.
get_global_env
(
"phase"
)
[
0
]
with
fluid
.
scope_guard
(
context
[
"model"
][
model_dict
[
"name"
]][
"scope"
]):
context
[
"exe"
].
run
(
context
[
"model"
][
model_dict
[
"name"
]][
"startup_program"
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录