Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
840c310a
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
840c310a
编写于
4月 20, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update code
上级
45ec57e9
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
126 addition
and
88 deletion
+126
-88
fleetrec/core/engine/engine.py
fleetrec/core/engine/engine.py
+1
-0
fleetrec/core/trainer.py
fleetrec/core/trainer.py
+20
-1
fleetrec/examples/ctr-dnn_train.yaml
fleetrec/examples/ctr-dnn_train.yaml
+0
-1
fleetrec/examples/runtime.yaml
fleetrec/examples/runtime.yaml
+12
-0
fleetrec/examples/user_define_trainer.py
fleetrec/examples/user_define_trainer.py
+0
-0
fleetrec/examples/user_define_trainer.yaml
fleetrec/examples/user_define_trainer.yaml
+0
-0
fleetrec/run.py
fleetrec/run.py
+93
-86
未找到文件。
fleetrec/core/engine/engine.py
浏览文件 @
840c310a
...
...
@@ -11,3 +11,4 @@ class Engine:
@
abc
.
abstractmethod
def
run
(
self
):
pass
fleetrec/core/trainer.py
浏览文件 @
840c310a
...
...
@@ -12,11 +12,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
abc
import
time
import
yaml
from
paddle
import
fluid
from
fleetrec.core.utils
import
envs
class
Trainer
(
object
):
...
...
@@ -78,3 +82,18 @@ class Trainer(object):
self
.
context_process
(
self
.
_context
)
if
self
.
_context
[
'is_exit'
]:
break
def
user_define_engine
(
engine_yaml
):
with
open
(
engine_yaml
,
'r'
)
as
rb
:
_config
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
assert
_config
is
not
None
envs
.
set_runtime_envions
(
_config
)
train_location
=
envs
.
get_global_env
(
"engine.file"
)
train_dirname
=
os
.
path
.
dirname
(
train_location
)
base_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
train_location
))[
0
]
sys
.
path
.
append
(
train_dirname
)
trainer_class
=
envs
.
lazy_instance
(
base_name
,
"UserDefineTraining"
)
return
trainer_class
fleetrec/examples/ctr-dnn_train.yaml
浏览文件 @
840c310a
...
...
@@ -13,7 +13,6 @@
# limitations under the License.
train
:
threads
:
12
epochs
:
10
reader
:
...
...
fleetrec/examples/runtime.yaml
0 → 100644
浏览文件 @
840c310a
trainer
:
trainer
:
"
/root/FleetRec/fleetrec/examples/user_define_trainer.py"
threads
:
4
# for cluster training
communicator
:
strategy
:
"
async"
send_queue_size
:
4
min_send_grad_num_before_recv
:
4
thread_pool_size
:
5
max_merge_var_num
:
4
fleetrec/examples/user_define
/user_define
_trainer.py
→
fleetrec/examples/user_define_trainer.py
浏览文件 @
840c310a
文件已移动
fleetrec/examples/user_define
/user_define
_trainer.yaml
→
fleetrec/examples/user_define_trainer.yaml
浏览文件 @
840c310a
文件已移动
fleetrec/run.py
浏览文件 @
840c310a
...
...
@@ -9,115 +9,122 @@ from fleetrec.core.factory import TrainerFactory
from
fleetrec.core.utils
import
envs
from
fleetrec.core.utils
import
util
engines
=
{
"TRAINSPILER"
:
{},
"PSLIB"
:
{}}
def
run
(
model_yaml
):
trainer
=
TrainerFactory
.
create
(
model_yaml
)
trainer
.
run
()
def
engine_registry
():
engines
[
"TRAINSPILER"
][
"SINGLE"
]
=
single_engine
engines
[
"TRAINSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRAINSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
def
get_engine
(
engine
):
engine
=
engine
.
upper
()
if
version
.
is_transpiler
():
run_engine
=
engines
[
"TRAINSPILER"
].
get
(
engine
,
None
)
else
:
run_engine
=
engines
[
"PSLIB"
].
get
(
engine
,
None
)
if
run_engine
is
None
:
raise
ValueError
(
"engine only support SINGLE/LOCAL_CLUSTER/CLUSTER"
)
return
run_engine
def
single_engine
(
args
):
print
(
"use SingleTraining to run model: {}"
.
format
(
args
.
model
))
single_envs
=
{
"train.trainer"
:
"SingleTraining"
}
def
single_engine
(
single_envs
,
model_yaml
):
print
(
envs
.
pretty_print_envs
(
single_envs
,
(
"Single Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
single_envs
)
run
(
model_yaml
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
print
(
"launch ClusterTraining with cluster to run model: {}"
.
format
(
args
.
model
))
cluster_envs
=
{
"train.trainer"
:
"ClusterTraining"
}
envs
.
set_runtime_envions
(
cluster_envs
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_mpi_engine
(
args
):
print
(
"launch ClusterTraining with cluster to run model: {}"
.
format
(
args
.
model
))
def
local_cluster_engine
(
cluster_envs
,
model_yaml
):
cluster_envs
=
{
"train.trainer"
:
"CtrTraining"
}
envs
.
set_runtime_envions
(
cluster_envs
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
local_cluster_engine
(
args
):
from
fleetrec.core.engine.local_cluster_engine
import
LocalClusterEngine
cluster_envs
=
{}
cluster_envs
[
"server_num"
]
=
1
cluster_envs
[
"worker_num"
]
=
1
cluster_envs
[
"start_port"
]
=
36001
cluster_envs
[
"log_dir"
]
=
"logs"
cluster_envs
[
"train.trainer"
]
=
"ClusterTraining"
cluster_envs
[
"train.strategy.mode"
]
=
"async"
print
(
envs
.
pretty_print_envs
(
cluster_envs
,
(
"Local Cluster Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
cluster_envs
)
launch
=
LocalClusterEngine
(
cluster_envs
,
model_yaml
)
launch
.
run
()
launch
=
LocalClusterEngine
(
cluster_envs
,
args
.
model
)
return
launch
def
local_mpi_engine
(
cluster_envs
,
model_yaml
):
from
fleetrec.core.engine.local_mpi_engine
import
LocalMPIEngine
print
(
envs
.
pretty_print_envs
(
cluster_envs
,
(
"Local MPI Cluster Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
cluster_envs
)
launch
=
LocalMPIEngine
(
cluster_envs
,
model_yaml
)
launch
.
run
()
def
local_mpi_engine
(
args
):
from
fleetrec.core.engine.local_mpi_engine
import
LocalMPIEngine
print
(
"use 1X1 MPI ClusterTraining at localhost to run model: {}"
.
format
(
args
.
model
))
def
yaml_engine
(
engine_yaml
,
model_yaml
):
with
open
(
engine_yaml
,
'r'
)
as
rb
:
_config
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
assert
_config
is
not
None
mpi
=
util
.
run_which
(
"mpirun"
)
if
not
mpi
:
raise
RuntimeError
(
"can not find mpirun, please check environment"
)
envs
.
set_global_envs
(
_config
)
cluster_envs
=
{
"mpirun"
:
mpi
,
"train.trainer"
:
"CtrTraining"
,
"log_dir"
:
"logs"
}
train_location
=
envs
.
get_global_env
(
"engine.file"
)
train_dirname
=
os
.
path
.
dirname
(
train_location
)
base_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
train_location
))[
0
]
sys
.
path
.
append
(
train_dirname
)
trainer_class
=
envs
.
lazy_instance
(
base_name
,
"UserDefineTraining"
)
trainer
=
trainer_class
(
model_yaml
)
trainer
.
run
()
print
(
envs
.
pretty_print_envs
(
cluster_envs
,
(
"Local MPI Cluster Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
cluster_envs
)
launch
=
LocalMPIEngine
(
cluster_envs
,
args
.
model
)
return
launch
#
# def yaml_engine(engine_yaml, model_yaml):
# with open(engine_yaml, 'r') as rb:
# _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
# assert _config is not None
#
# envs.set_global_envs(_config)
#
# train_location = envs.get_global_env("engine.file")
# train_dirname = os.path.dirname(train_location)
# base_name = os.path.splitext(os.path.basename(train_location))[0]
# sys.path.append(train_dirname)
# trainer_class = envs.lazy_instance(base_name, "UserDefineTraining")
# trainer = trainer_class(model_yaml)
# return trainer
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
description
=
'fleet-rec run'
)
parser
.
add_argument
(
"--model"
,
type
=
str
)
parser
.
add_argument
(
"--engine"
,
type
=
str
)
parser
.
add_argument
(
"--engine_extras"
,
type
=
str
)
parser
.
add_argument
(
"-
m"
,
"-
-model"
,
type
=
str
)
parser
.
add_argument
(
"-
e"
,
"-
-engine"
,
type
=
str
)
parser
.
add_argument
(
"-
ex"
,
"-
-engine_extras"
,
type
=
str
)
args
=
parser
.
parse_args
()
if
not
os
.
path
.
exists
(
args
.
model
)
or
not
os
.
path
.
isfile
(
args
.
model
):
raise
ValueError
(
"argument model: {} error, must specify a existed yaml file"
.
format
(
args
.
model
))
if
args
.
engine
.
upper
()
==
"SINGLE"
:
if
version
.
is_transpiler
():
print
(
"use SingleTraining to run model: {}"
.
format
(
args
.
model
))
single_envs
=
{
"train.trainer"
:
"SingleTraining"
}
single_engine
(
single_envs
,
args
.
model
)
else
:
print
(
"use 1X1 MPI ClusterTraining at localhost to run model: {}"
.
format
(
args
.
model
))
mpi_path
=
util
.
run_which
(
"mpirun"
)
if
not
mpi_path
:
raise
RuntimeError
(
"can not find mpirun, please check environment"
)
cluster_envs
=
{
"mpirun"
:
mpi_path
,
"train.trainer"
:
"CtrTraining"
,
"log_dir"
:
"logs"
}
local_mpi_engine
(
cluster_envs
,
args
.
model
)
elif
args
.
engine
.
upper
()
==
"LOCAL_CLUSTER"
:
print
(
"use 1X1 ClusterTraining at localhost to run model: {}"
.
format
(
args
.
model
))
if
version
.
is_transpiler
():
cluster_envs
=
{}
cluster_envs
[
"server_num"
]
=
1
cluster_envs
[
"worker_num"
]
=
1
cluster_envs
[
"start_port"
]
=
36001
cluster_envs
[
"log_dir"
]
=
"logs"
cluster_envs
[
"train.trainer"
]
=
"ClusterTraining"
cluster_envs
[
"train.strategy.mode"
]
=
"async"
local_cluster_engine
(
cluster_envs
,
args
.
model
)
else
:
print
(
"use 1X1 MPI ClusterTraining at localhost to run model: {}"
.
format
(
args
.
model
))
mpi_path
=
util
.
run_which
(
"mpirun"
)
if
not
mpi_path
:
raise
RuntimeError
(
"can not find mpirun, please check environment"
)
cluster_envs
=
{
"mpirun"
:
mpi_path
,
"train.trainer"
:
"CtrTraining"
,
"log_dir"
:
"logs"
}
local_mpi_engine
(
cluster_envs
,
args
.
model
)
elif
args
.
engine
.
upper
()
==
"CLUSTER"
:
print
(
"launch ClusterTraining with cluster to run model: {}"
.
format
(
args
.
model
))
if
version
.
is_transpiler
():
print
(
"use ClusterTraining to run model: {}"
.
format
(
args
.
model
))
cluster_envs
=
{
"train.trainer"
:
"ClusterTraining"
}
envs
.
set_runtime_envions
(
cluster_envs
)
else
:
cluster_envs
=
{
"train.trainer"
:
"CtrTraining"
}
envs
.
set_runtime_envions
(
cluster_envs
)
run
(
args
.
model
)
elif
args
.
engine
.
upper
()
==
"USER_DEFINE"
:
engine_file
=
args
.
engine_extras
if
not
os
.
path
.
exists
(
engine_file
)
or
not
os
.
path
.
isfile
(
engine_file
):
raise
ValueError
(
"argument engine: user_define error, must specify a existed yaml file"
.
format
(
args
.
engine_file
))
yaml_engine
(
engine_file
,
args
.
model
)
else
:
raise
ValueError
(
"engine only support SINGLE/LOCAL_CLUSTER/CLUSTER/USER_DEFINE"
)
raise
ValueError
(
"argument model: {} error, must specify an existed YAML file"
.
format
(
args
.
model
))
which_engine
=
get_engine
(
args
.
engine
)
engine
=
which_engine
(
args
)
engine
.
run
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录