preprocess.py 8.0 KB
Newer Older
1
# -*- coding: utf-8 -*
T
tangwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
16 17
import io
import math
18 19 20 21
import os
import random
import re
import six
T
tangwei 已提交
22

23
import argparse
T
tangwei 已提交
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
prog = re.compile("[^a-z ]", flags=0)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Paddle Fluid word2 vector preprocess")
    parser.add_argument(
        '--build_dict_corpus_dir', type=str, help="The dir of corpus")
    parser.add_argument(
        '--input_corpus_dir', type=str, help="The dir of input corpus")
    parser.add_argument(
        '--output_corpus_dir', type=str, help="The dir of output corpus")
    parser.add_argument(
        '--dict_path',
        type=str,
        default='./dict',
        help="The path of dictionary ")
    parser.add_argument(
        '--min_count',
        type=int,
        default=5,
        help="If the word count is less then min_count, it will be removed from dict"
    )
    parser.add_argument(
        '--file_nums',
        type=int,
        default=1024,
T
tangwei 已提交
52
        help="re-split input corpus file nums")
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
    parser.add_argument(
        '--downsample',
        type=float,
        default=0.001,
        help="filter word by downsample")
    parser.add_argument(
        '--filter_corpus',
        action='store_true',
        default=False,
        help='Filter corpus')
    parser.add_argument(
        '--build_dict',
        action='store_true',
        default=False,
        help='Build dict from corpus')
    parser.add_argument(
        '--data_resplit',
        action='store_true',
        default=False,
        help='re-split input corpus files')
    return parser.parse_args()


def text_strip(text):
T
for mat  
tangwei 已提交
77
    # English Preprocess Rule
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    return prog.sub("", text.lower())


# Shameless copy from Tensorflow https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py
# Unicode utility functions that work with Python 2 and 3
def native_to_unicode(s):
    if _is_unicode(s):
        return s
    try:
        return _to_unicode(s)
    except UnicodeDecodeError:
        res = _to_unicode(s, ignore_errors=True)
        return res


def _is_unicode(s):
    if six.PY2:
        if isinstance(s, unicode):
            return True
    else:
        if isinstance(s, str):
            return True
    return False


def _to_unicode(s, ignore_errors=False):
    if _is_unicode(s):
        return s
    error_mode = "ignore" if ignore_errors else "strict"
    return s.decode("utf-8", errors=error_mode)


def filter_corpus(args):
    """
    filter corpus and convert id.
    """
    word_count = dict()
    word_to_id_ = dict()
    word_all_count = 0
    id_counts = []
    word_id = 0
T
for mat  
tangwei 已提交
119
    # read dict
120 121 122 123 124 125 126 127 128
    with io.open(args.dict_path, 'r', encoding='utf-8') as f:
        for line in f:
            word, count = line.split()[0], int(line.split()[1])
            word_count[word] = count
            word_to_id_[word] = word_id
            word_id += 1
            id_counts.append(count)
            word_all_count += count

T
for mat  
tangwei 已提交
129
    # write word2id file
130 131 132 133 134
    print("write word2id file to : " + args.dict_path + "_word_to_id_")
    with io.open(
            args.dict_path + "_word_to_id_", 'w+', encoding='utf-8') as fid:
        for k, v in word_to_id_.items():
            fid.write(k + " " + str(v) + '\n')
T
for mat  
tangwei 已提交
135
    # filter corpus and convert id
136 137 138
    if not os.path.exists(args.output_corpus_dir):
        os.makedirs(args.output_corpus_dir)
    for file in os.listdir(args.input_corpus_dir):
T
tangwei 已提交
139 140
        with io.open(args.output_corpus_dir + '/convert_' + file + '.csv',
                     "w") as wf:
141
            with io.open(
T
tangwei 已提交
142 143
                    args.input_corpus_dir + '/' + file,
                    encoding='utf-8') as rf:
144 145 146 147 148 149 150 151 152 153 154 155 156 157
                print(args.input_corpus_dir + '/' + file)
                for line in rf:
                    signal = False
                    line = text_strip(line)
                    words = line.split()
                    write_line = ""
                    for item in words:
                        if item in word_count:
                            idx = word_to_id_[item]
                        else:
                            idx = word_to_id_[native_to_unicode('<UNK>')]
                        count_w = id_counts[idx]
                        corpus_size = word_all_count
                        keep_prob = (
T
tangwei 已提交
158 159 160
                            math.sqrt(count_w /
                                      (args.downsample * corpus_size)) + 1
                        ) * (args.downsample * corpus_size) / count_w
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                        r_value = random.random()
                        if r_value > keep_prob:
                            continue
                        write_line += str(idx)
                        write_line += ","
                        signal = True
                    if signal:
                        write_line = write_line[:-1] + "\n"
                        wf.write(_to_unicode(write_line))


def build_dict(args):
    """
    proprocess the data, generate dictionary and save into dict_path.
    :param corpus_dir: the input data dir.
    :param dict_path: the generated dict path. the data in dict is "word count"
    :param min_count:
    :return:
    """
    # word to count

    word_count = dict()

    for file in os.listdir(args.build_dict_corpus_dir):
        with io.open(
T
tangwei 已提交
186 187
                args.build_dict_corpus_dir + "/" + file,
                encoding='utf-8') as f:
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
            print("build dict : ", args.build_dict_corpus_dir + "/" + file)
            for line in f:
                line = text_strip(line)
                words = line.split()
                for item in words:
                    if item in word_count:
                        word_count[item] = word_count[item] + 1
                    else:
                        word_count[item] = 1

    item_to_remove = []
    for item in word_count:
        if word_count[item] <= args.min_count:
            item_to_remove.append(item)

    unk_sum = 0
    for item in item_to_remove:
        unk_sum += word_count[item]
        del word_count[item]
T
for mat  
tangwei 已提交
207
    # sort by count
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    word_count[native_to_unicode('<UNK>')] = unk_sum
    word_count = sorted(
        word_count.items(), key=lambda word_count: -word_count[1])

    with io.open(args.dict_path, 'w+', encoding='utf-8') as f:
        for k, v in word_count:
            f.write(k + " " + str(v) + '\n')


def data_split(args):
    raw_data_dir = args.input_corpus_dir
    new_data_dir = args.output_corpus_dir
    if not os.path.exists(new_data_dir):
        os.mkdir(new_data_dir)
    files = os.listdir(raw_data_dir)
    print(files)
    index = 0
    contents = []
    for file_ in files:
        with open(os.path.join(raw_data_dir, file_), 'r') as f:
            contents.extend(f.readlines())
T
for mat  
tangwei 已提交
229

230 231 232 233
    num = int(args.file_nums)
    lines_per_file = len(contents) / num
    print("contents: ", str(len(contents)))
    print("lines_per_file: ", str(lines_per_file))
T
for mat  
tangwei 已提交
234 235

    for i in range(1, num + 1):
236
        with open(os.path.join(new_data_dir, "part_" + str(i)), 'w') as fout:
T
tangwei 已提交
237 238
            data = contents[(i - 1) * lines_per_file:min(i * lines_per_file,
                                                         len(contents))]
239
            for line in data:
T
for mat  
tangwei 已提交
240 241
                fout.write(line)

242 243 244 245 246 247 248 249 250 251 252 253

if __name__ == "__main__":
    args = parse_args()
    if args.build_dict:
        build_dict(args)
    elif args.filter_corpus:
        filter_corpus(args)
    elif args.data_resplit:
        data_split(args)
    else:
        print(
            "error command line, please choose --build_dict or --filter_corpus")