preprocess.py 7.9 KB
Newer Older
1
# -*- coding: utf-8 -*
T
tangwei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
16 17
import io
import math
18 19 20 21
import os
import random
import re
import six
T
tangwei 已提交
22

23
import argparse
T
tangwei 已提交
24

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
prog = re.compile("[^a-z ]", flags=0)


def parse_args():
    parser = argparse.ArgumentParser(
        description="Paddle Fluid word2 vector preprocess")
    parser.add_argument(
        '--build_dict_corpus_dir', type=str, help="The dir of corpus")
    parser.add_argument(
        '--input_corpus_dir', type=str, help="The dir of input corpus")
    parser.add_argument(
        '--output_corpus_dir', type=str, help="The dir of output corpus")
    parser.add_argument(
        '--dict_path',
        type=str,
        default='./dict',
        help="The path of dictionary ")
    parser.add_argument(
        '--min_count',
        type=int,
        default=5,
        help="If the word count is less then min_count, it will be removed from dict"
    )
    parser.add_argument(
        '--file_nums',
        type=int,
        default=1024,
        help="re-split input corpus file nums"
    )
    parser.add_argument(
        '--downsample',
        type=float,
        default=0.001,
        help="filter word by downsample")
    parser.add_argument(
        '--filter_corpus',
        action='store_true',
        default=False,
        help='Filter corpus')
    parser.add_argument(
        '--build_dict',
        action='store_true',
        default=False,
        help='Build dict from corpus')
    parser.add_argument(
        '--data_resplit',
        action='store_true',
        default=False,
        help='re-split input corpus files')
    return parser.parse_args()


def text_strip(text):
T
for mat  
tangwei 已提交
78
    # English Preprocess Rule
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    return prog.sub("", text.lower())


# Shameless copy from Tensorflow https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/data_generators/text_encoder.py
# Unicode utility functions that work with Python 2 and 3
def native_to_unicode(s):
    if _is_unicode(s):
        return s
    try:
        return _to_unicode(s)
    except UnicodeDecodeError:
        res = _to_unicode(s, ignore_errors=True)
        return res


def _is_unicode(s):
    if six.PY2:
        if isinstance(s, unicode):
            return True
    else:
        if isinstance(s, str):
            return True
    return False


def _to_unicode(s, ignore_errors=False):
    if _is_unicode(s):
        return s
    error_mode = "ignore" if ignore_errors else "strict"
    return s.decode("utf-8", errors=error_mode)


def filter_corpus(args):
    """
    filter corpus and convert id.
    """
    word_count = dict()
    word_to_id_ = dict()
    word_all_count = 0
    id_counts = []
    word_id = 0
T
for mat  
tangwei 已提交
120
    # read dict
121 122 123 124 125 126 127 128 129
    with io.open(args.dict_path, 'r', encoding='utf-8') as f:
        for line in f:
            word, count = line.split()[0], int(line.split()[1])
            word_count[word] = count
            word_to_id_[word] = word_id
            word_id += 1
            id_counts.append(count)
            word_all_count += count

T
for mat  
tangwei 已提交
130
    # write word2id file
131 132 133 134 135
    print("write word2id file to : " + args.dict_path + "_word_to_id_")
    with io.open(
            args.dict_path + "_word_to_id_", 'w+', encoding='utf-8') as fid:
        for k, v in word_to_id_.items():
            fid.write(k + " " + str(v) + '\n')
T
for mat  
tangwei 已提交
136
    # filter corpus and convert id
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    if not os.path.exists(args.output_corpus_dir):
        os.makedirs(args.output_corpus_dir)
    for file in os.listdir(args.input_corpus_dir):
        with io.open(args.output_corpus_dir + '/convert_' + file + '.csv', "w") as wf:
            with io.open(
                    args.input_corpus_dir + '/' + file, encoding='utf-8') as rf:
                print(args.input_corpus_dir + '/' + file)
                for line in rf:
                    signal = False
                    line = text_strip(line)
                    words = line.split()
                    write_line = ""
                    for item in words:
                        if item in word_count:
                            idx = word_to_id_[item]
                        else:
                            idx = word_to_id_[native_to_unicode('<UNK>')]
                        count_w = id_counts[idx]
                        corpus_size = word_all_count
                        keep_prob = (
T
for mat  
tangwei 已提交
157 158 159
                                            math.sqrt(count_w /
                                                      (args.downsample * corpus_size)) + 1
                                    ) * (args.downsample * corpus_size) / count_w
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                        r_value = random.random()
                        if r_value > keep_prob:
                            continue
                        write_line += str(idx)
                        write_line += ","
                        signal = True
                    if signal:
                        write_line = write_line[:-1] + "\n"
                        wf.write(_to_unicode(write_line))


def build_dict(args):
    """
    proprocess the data, generate dictionary and save into dict_path.
    :param corpus_dir: the input data dir.
    :param dict_path: the generated dict path. the data in dict is "word count"
    :param min_count:
    :return:
    """
    # word to count

    word_count = dict()

    for file in os.listdir(args.build_dict_corpus_dir):
        with io.open(
                args.build_dict_corpus_dir + "/" + file, encoding='utf-8') as f:
            print("build dict : ", args.build_dict_corpus_dir + "/" + file)
            for line in f:
                line = text_strip(line)
                words = line.split()
                for item in words:
                    if item in word_count:
                        word_count[item] = word_count[item] + 1
                    else:
                        word_count[item] = 1

    item_to_remove = []
    for item in word_count:
        if word_count[item] <= args.min_count:
            item_to_remove.append(item)

    unk_sum = 0
    for item in item_to_remove:
        unk_sum += word_count[item]
        del word_count[item]
T
for mat  
tangwei 已提交
205
    # sort by count
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    word_count[native_to_unicode('<UNK>')] = unk_sum
    word_count = sorted(
        word_count.items(), key=lambda word_count: -word_count[1])

    with io.open(args.dict_path, 'w+', encoding='utf-8') as f:
        for k, v in word_count:
            f.write(k + " " + str(v) + '\n')


def data_split(args):
    raw_data_dir = args.input_corpus_dir
    new_data_dir = args.output_corpus_dir
    if not os.path.exists(new_data_dir):
        os.mkdir(new_data_dir)
    files = os.listdir(raw_data_dir)
    print(files)
    index = 0
    contents = []
    for file_ in files:
        with open(os.path.join(raw_data_dir, file_), 'r') as f:
            contents.extend(f.readlines())
T
for mat  
tangwei 已提交
227

228 229 230 231
    num = int(args.file_nums)
    lines_per_file = len(contents) / num
    print("contents: ", str(len(contents)))
    print("lines_per_file: ", str(lines_per_file))
T
for mat  
tangwei 已提交
232 233

    for i in range(1, num + 1):
234
        with open(os.path.join(new_data_dir, "part_" + str(i)), 'w') as fout:
T
for mat  
tangwei 已提交
235
            data = contents[(i - 1) * lines_per_file:min(i * lines_per_file, len(contents))]
236
            for line in data:
T
for mat  
tangwei 已提交
237 238
                fout.write(line)

239 240 241 242 243 244 245 246 247 248 249 250

if __name__ == "__main__":
    args = parse_args()
    if args.build_dict:
        build_dict(args)
    elif args.filter_corpus:
        filter_corpus(args)
    elif args.data_resplit:
        data_split(args)
    else:
        print(
            "error command line, please choose --build_dict or --filter_corpus")