Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
7a3ec4e6
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7a3ec4e6
编写于
5月 19, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
for mat
上级
801dfd34
变更
55
隐藏空白更改
内联
并排
Showing
55 changed file
with
515 addition
and
491 deletion
+515
-491
core/engine/engine.py
core/engine/engine.py
+0
-1
core/engine/local_cluster.py
core/engine/local_cluster.py
+0
-1
core/metric.py
core/metric.py
+1
-1
core/metrics/auc_metrics.py
core/metrics/auc_metrics.py
+1
-1
core/trainers/__init__.py
core/trainers/__init__.py
+26
-0
core/trainers/ctr_coding_trainer.py
core/trainers/ctr_coding_trainer.py
+1
-1
core/trainers/ctr_modul_trainer.py
core/trainers/ctr_modul_trainer.py
+1
-1
core/trainers/online_learning_trainer.py
core/trainers/online_learning_trainer.py
+1
-1
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+4
-3
core/trainers/tdm_cluster_trainer.py
core/trainers/tdm_cluster_trainer.py
+0
-1
core/trainers/tdm_single_trainer.py
core/trainers/tdm_single_trainer.py
+0
-1
core/trainers/transpiler_trainer.py
core/trainers/transpiler_trainer.py
+3
-3
core/utils/dataset_holder.py
core/utils/dataset_holder.py
+2
-12
core/utils/fs.py
core/utils/fs.py
+13
-11
core/utils/table.py
core/utils/table.py
+1
-1
models/contentunderstanding/classification/model.py
models/contentunderstanding/classification/model.py
+2
-2
models/contentunderstanding/classification/reader.py
models/contentunderstanding/classification/reader.py
+4
-3
models/contentunderstanding/tagspace/model.py
models/contentunderstanding/tagspace/model.py
+9
-11
models/contentunderstanding/tagspace/reader.py
models/contentunderstanding/tagspace/reader.py
+4
-5
models/match/dssm/model.py
models/match/dssm/model.py
+29
-28
models/match/dssm/synthetic_reader.py
models/match/dssm/synthetic_reader.py
+1
-1
models/match/multiview-simnet/evaluate_reader.py
models/match/multiview-simnet/evaluate_reader.py
+4
-3
models/match/multiview-simnet/generate_synthetic_data.py
models/match/multiview-simnet/generate_synthetic_data.py
+7
-3
models/match/multiview-simnet/model.py
models/match/multiview-simnet/model.py
+34
-31
models/match/multiview-simnet/reader.py
models/match/multiview-simnet/reader.py
+4
-3
models/multitask/esmm/esmm_infer_reader.py
models/multitask/esmm/esmm_infer_reader.py
+12
-11
models/multitask/esmm/esmm_reader.py
models/multitask/esmm/esmm_reader.py
+15
-13
models/multitask/esmm/model.py
models/multitask/esmm/model.py
+34
-36
models/multitask/mmoe/census_reader.py
models/multitask/mmoe/census_reader.py
+2
-2
models/multitask/mmoe/model.py
models/multitask/mmoe/model.py
+31
-31
models/multitask/share-bottom/census_reader.py
models/multitask/share-bottom/census_reader.py
+2
-2
models/multitask/share-bottom/model.py
models/multitask/share-bottom/model.py
+26
-26
models/rank/dcn/criteo_reader.py
models/rank/dcn/criteo_reader.py
+7
-7
models/rank/dcn/model.py
models/rank/dcn/model.py
+10
-11
models/rank/deepfm/criteo_reader.py
models/rank/deepfm/criteo_reader.py
+4
-3
models/rank/deepfm/model.py
models/rank/deepfm/model.py
+27
-27
models/rank/din/reader.py
models/rank/din/reader.py
+10
-15
models/rank/wide_deep/model.py
models/rank/wide_deep/model.py
+38
-29
models/rank/wide_deep/reader.py
models/rank/wide_deep/reader.py
+4
-3
models/rank/xdeepfm/criteo_reader.py
models/rank/xdeepfm/criteo_reader.py
+4
-4
models/rank/xdeepfm/model.py
models/rank/xdeepfm/model.py
+14
-14
models/recall/gnn/evaluate_reader.py
models/recall/gnn/evaluate_reader.py
+9
-7
models/recall/gnn/model.py
models/recall/gnn/model.py
+64
-64
models/recall/gnn/reader.py
models/recall/gnn/reader.py
+9
-7
models/recall/gru4rec/model.py
models/recall/gru4rec/model.py
+0
-2
models/recall/ssr/model.py
models/recall/ssr/model.py
+4
-6
models/recall/ssr/ssr_infer_reader.py
models/recall/ssr/ssr_infer_reader.py
+1
-3
models/recall/ssr/ssr_reader.py
models/recall/ssr/ssr_reader.py
+0
-2
models/recall/word2vec/preprocess.py
models/recall/word2vec/preprocess.py
+14
-16
models/recall/word2vec/w2v_evaluate_reader.py
models/recall/word2vec/w2v_evaluate_reader.py
+7
-8
models/recall/word2vec/w2v_reader.py
models/recall/word2vec/w2v_reader.py
+4
-4
models/treebased/tdm/model.py
models/treebased/tdm/model.py
+8
-8
models/treebased/tdm/tdm_evaluate_reader.py
models/treebased/tdm/tdm_evaluate_reader.py
+1
-0
models/treebased/tdm/tdm_reader.py
models/treebased/tdm/tdm_reader.py
+1
-0
setup.py
setup.py
+1
-1
未找到文件。
core/engine/engine.py
浏览文件 @
7a3ec4e6
...
...
@@ -29,4 +29,3 @@ class Engine:
@
abc
.
abstractmethod
def
run
(
self
):
pass
core/engine/local_cluster.py
浏览文件 @
7a3ec4e6
...
...
@@ -20,7 +20,6 @@ import os
import
sys
import
subprocess
from
paddlerec.core.engine.engine
import
Engine
from
paddlerec.core.utils
import
envs
...
...
core/metric.py
浏览文件 @
7a3ec4e6
...
...
@@ -53,7 +53,7 @@ class Metric(object):
pass
@
abc
.
abstractmethod
def
get_result_to_string
(
self
):
def
__str__
(
self
):
"""
Return:
result(string) : calculate result with string format, for output
...
...
core/metrics/auc_metrics.py
浏览文件 @
7a3ec4e6
...
...
@@ -200,7 +200,7 @@ class AUCMetric(Metric):
""" """
return
self
.
_result
def
get_result_to_string
(
self
):
def
__str__
(
self
):
""" """
result
=
self
.
get_result
()
result_str
=
"%s AUC=%.6f BUCKET_ERROR=%.6f MAE=%.6f RMSE=%.6f "
\
...
...
core/trainers/__init__.py
浏览文件 @
7a3ec4e6
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
trainer implement.
↗ (single/cluster) CtrTrainer
Trainer
↗ (for single training) SingleTrainer/TDMSingleTrainer
↘ TranspilerTrainer → (for cluster training) ClusterTrainer/TDMClusterTrainer
↘ (for online learning training) OnlineLearningTrainer
"""
core/trainers/ctr_coding_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -23,7 +23,7 @@ from paddlerec.core.utils import envs
from
paddlerec.core.trainer
import
Trainer
class
Ctr
Paddle
Trainer
(
Trainer
):
class
CtrTrainer
(
Trainer
):
"""R
"""
...
...
core/trainers/ctr_modul_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -72,7 +72,7 @@ def worker_numric_max(value, env="mpi"):
return
wroker_numric_opt
(
value
,
env
,
"max"
)
class
Ctr
Paddle
Trainer
(
Trainer
):
class
CtrTrainer
(
Trainer
):
"""R
"""
...
...
core/trainers/online_learning_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -31,7 +31,7 @@ from paddlerec.core.utils import envs
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
class
Cluster
Trainer
(
TranspileTrainer
):
class
OnlineLearning
Trainer
(
TranspileTrainer
):
def
processor_register
(
self
):
role
=
PaddleCloudRoleMaker
()
fleet
.
init
(
role
)
...
...
core/trainers/single_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -36,7 +36,8 @@ class SingleTrainer(TranspileTrainer):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
if
envs
.
get_platform
()
==
"LINUX"
and
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
!=
"DataLoader"
:
if
envs
.
get_platform
()
==
"LINUX"
and
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
!=
"DataLoader"
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataset_train
)
else
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataloader_train
)
...
...
@@ -122,8 +123,8 @@ class SingleTrainer(TranspileTrainer):
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
end_time
=
time
.
time
()
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
...
...
core/trainers/tdm_cluster_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -27,7 +27,6 @@ from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import f
from
paddlerec.core.utils
import
envs
from
paddlerec.core.trainers.cluster_trainer
import
ClusterTrainer
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
...
...
core/trainers/tdm_single_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -24,7 +24,6 @@ import paddle.fluid as fluid
from
paddlerec.core.trainers.single_trainer
import
SingleTrainer
from
paddlerec.core.utils
import
envs
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
...
...
core/trainers/transpiler_trainer.py
浏览文件 @
7a3ec4e6
...
...
@@ -147,8 +147,8 @@ class TranspileTrainer(Trainer):
if
not
need_save
(
epoch_id
,
save_interval
,
False
):
return
# print("save inference model is not supported now.")
# return
# print("save inference model is not supported now.")
# return
feed_varnames
=
envs
.
get_global_env
(
"save.inference.feed_varnames"
,
None
,
namespace
)
...
...
@@ -248,7 +248,7 @@ class TranspileTrainer(Trainer):
'evaluate_model_path'
,
""
,
namespace
=
'evaluate'
))]
is_return_numpy
=
envs
.
get_global_env
(
'is_return_numpy'
,
True
,
namespace
=
'evaluate'
)
'is_return_numpy'
,
True
,
namespace
=
'evaluate'
)
for
(
epoch
,
model_dir
)
in
model_list
:
print
(
"Begin to infer No.{} model, model_dir: {}"
.
format
(
...
...
core/utils/dataset.py
→
core/utils/dataset
_holder
.py
浏览文件 @
7a3ec4e6
...
...
@@ -22,7 +22,7 @@ from paddlerec.core.utils import fs as fs
from
paddlerec.core.utils
import
util
as
util
class
Dataset
(
object
):
class
Dataset
Holder
(
object
):
"""
Dataset Base
"""
...
...
@@ -62,7 +62,7 @@ class Dataset(object):
pass
class
TimeSplitDataset
(
Dataset
):
class
TimeSplitDataset
Holder
(
DatasetHolder
):
"""
Dataset with time split dir. root_path/$DAY/$HOUR
"""
...
...
@@ -142,16 +142,6 @@ class TimeSplitDataset(Dataset):
data_time
=
data_time
+
datetime
.
timedelta
(
minutes
=
self
.
_split_interval
)
return
data_file_list
class
FluidTimeSplitDataset
(
TimeSplitDataset
):
"""
A Dataset with time split for PaddleFluid
"""
def
__init__
(
self
,
config
):
""" """
TimeSplitDataset
.
__init__
(
self
,
config
)
def
_alloc_dataset
(
self
,
file_list
):
""" """
dataset
=
fluid
.
DatasetFactory
().
create_dataset
(
self
.
_config
[
'dataset_type'
])
...
...
core/utils/fs.py
浏览文件 @
7a3ec4e6
...
...
@@ -29,12 +29,12 @@ class LocalFSClient(object):
"""
Util for local disk file_system io
"""
def
__init__
(
self
):
"""R
"""
pass
def
write
(
self
,
content
,
path
,
mode
):
"""
write to file
...
...
@@ -44,7 +44,7 @@ class LocalFSClient(object):
mode(string): w/a w:clear_write a:append_write
"""
temp_dir
=
os
.
path
.
dirname
(
path
)
if
not
os
.
path
.
exists
(
temp_dir
):
if
not
os
.
path
.
exists
(
temp_dir
):
os
.
makedirs
(
temp_dir
)
f
=
open
(
path
,
mode
)
f
.
write
(
content
)
...
...
@@ -76,7 +76,7 @@ class LocalFSClient(object):
"""R
"""
os
.
system
(
"rm -rf "
+
path
)
def
is_exist
(
self
,
path
):
"""R
"""
...
...
@@ -95,13 +95,14 @@ class FileHandler(object):
"""
A Smart file handler. auto judge local/afs by path
"""
def
__init__
(
self
,
config
):
"""R
"""
if
'fs_name'
in
config
:
hadoop_home
=
"$HADOOP_HOME"
hadoop_home
=
"$HADOOP_HOME"
hdfs_configs
=
{
"hadoop.job.ugi"
:
config
[
'fs_ugi'
],
"hadoop.job.ugi"
:
config
[
'fs_ugi'
],
"fs.default.name"
:
config
[
'fs_name'
]
}
self
.
_hdfs_client
=
HDFSClient
(
hadoop_home
,
hdfs_configs
)
...
...
@@ -132,7 +133,8 @@ class FileHandler(object):
if
mode
.
find
(
'a'
)
>=
0
:
org_content
=
self
.
_hdfs_client
.
cat
(
dest_path
)
content
=
content
+
org_content
self
.
_local_fs_client
.
write
(
content
,
temp_local_file
,
mode
)
#fleet hdfs_client only support upload, so write tmp file
self
.
_local_fs_client
.
write
(
content
,
temp_local_file
,
mode
)
# fleet hdfs_client only support upload, so write tmp file
self
.
_hdfs_client
.
delete
(
dest_path
+
".tmp"
)
self
.
_hdfs_client
.
upload
(
dest_path
+
".tmp"
,
temp_local_file
)
self
.
_hdfs_client
.
delete
(
dest_path
+
".bak"
)
...
...
@@ -140,7 +142,7 @@ class FileHandler(object):
self
.
_hdfs_client
.
rename
(
dest_path
+
".tmp"
,
dest_path
)
else
:
self
.
_local_fs_client
.
write
(
content
,
dest_path
,
mode
)
def
cat
(
self
,
path
):
"""R
"""
...
...
@@ -149,7 +151,7 @@ class FileHandler(object):
return
hdfs_cat
else
:
return
self
.
_local_fs_client
.
cat
(
path
)
def
ls
(
self
,
path
):
"""R
"""
...
...
@@ -161,7 +163,7 @@ class FileHandler(object):
files
=
self
.
_local_fs_client
.
ls
(
path
)
files
=
[
path
+
'/'
+
fi
for
fi
in
files
]
# absulte path
return
files
def
cp
(
self
,
org_path
,
dest_path
):
"""R
"""
...
...
@@ -171,6 +173,6 @@ class FileHandler(object):
return
self
.
_local_fs_client
.
cp
(
org_path
,
dest_path
)
if
not
org_is_afs
and
dest_is_afs
:
return
self
.
_hdfs_client
.
upload
(
dest_path
,
org_path
)
if
org_is_afs
and
not
dest_is_afs
:
if
org_is_afs
and
not
dest_is_afs
:
return
self
.
_hdfs_client
.
download
(
org_path
,
dest_path
)
print
(
"Not Suppor hdfs cp currently"
)
core/utils/table.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,7 +18,7 @@ class TableMeta(object):
Simple ParamTable Meta, Contain table_id
"""
TableId
=
1
@
staticmethod
def
alloc_new_table
(
table_id
):
"""
...
...
models/contentunderstanding/classification/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -30,7 +30,7 @@ class Model(ModelBase):
def
train_net
(
self
):
""" network definition """
data
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
None
,
self
.
max_len
],
dtype
=
'int64'
)
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
None
,
1
],
dtype
=
'int64'
)
seq_len
=
fluid
.
data
(
name
=
"seq_len"
,
shape
=
[
None
],
dtype
=
'int64'
)
...
...
@@ -54,7 +54,7 @@ class Model(ModelBase):
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_1
],
size
=
self
.
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
prediction
,
label
=
label
)
self
.
cost
=
avg_cost
self
.
_metrics
[
"acc"
]
=
acc
...
...
models/contentunderstanding/classification/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -22,12 +22,12 @@ class TrainReader(Reader):
def
init
(
self
):
pass
def
_process_line
(
self
,
l
):
def
_process_line
(
self
,
l
):
l
=
l
.
strip
().
split
(
" "
)
data
=
l
[
0
:
10
]
seq_len
=
l
[
10
:
11
]
label
=
l
[
11
:]
return
data
,
label
,
seq_len
return
data
,
label
,
seq_len
def
generate_sample
(
self
,
line
):
def
data_iter
():
...
...
@@ -38,6 +38,7 @@ class TrainReader(Reader):
data
=
[
int
(
i
)
for
i
in
data
]
label
=
[
int
(
i
)
for
i
in
label
]
seq_len
=
[
int
(
i
)
for
i
in
seq_len
]
print
>>
sys
.
stderr
,
str
([(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)])
print
>>
sys
.
stderr
,
str
([(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)])
yield
[(
'data'
,
data
),
(
'label'
,
label
),
(
'seq_len'
,
seq_len
)]
return
data_iter
models/contentunderstanding/tagspace/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,6 +18,7 @@ import paddle.fluid.layers.tensor as tensor
import
paddle.fluid.layers.control_flow
as
cf
from
paddlerec.core.model
import
Model
as
ModelBase
from
paddlerec.core.utils
import
envs
class
Model
(
ModelBase
):
...
...
@@ -25,14 +26,13 @@ class Model(ModelBase):
ModelBase
.
__init__
(
self
,
config
)
self
.
cost
=
None
self
.
metrics
=
{}
self
.
vocab_text_size
=
11447
#envs.get_global_env("vocab_text_size", None, self._namespace)
self
.
vocab_tag_size
=
4
#envs.get_global_env("vocab_tag_size", None, self._namespace)
self
.
emb_dim
=
10
#envs.get_global_env("emb_dim", None, self._namespace)
self
.
hid_dim
=
1000
#envs.get_global_env("hid_dim", None, self._namespace)
self
.
win_size
=
5
#envs.get_global_env("win_size", None, self._namespace)
self
.
margin
=
0.1
#envs.get_global_env("margin", None, self._namespace)
self
.
neg_size
=
3
#envs.get_global_env("neg_size", None, self._namespace)
print
self
.
emb_dim
self
.
vocab_text_size
=
envs
.
get_global_env
(
"vocab_text_size"
,
None
,
self
.
_namespace
)
self
.
vocab_tag_size
=
envs
.
get_global_env
(
"vocab_tag_size"
,
None
,
self
.
_namespace
)
self
.
emb_dim
=
envs
.
get_global_env
(
"emb_dim"
,
None
,
self
.
_namespace
)
self
.
hid_dim
=
envs
.
get_global_env
(
"hid_dim"
,
None
,
self
.
_namespace
)
self
.
win_size
=
envs
.
get_global_env
(
"win_size"
,
None
,
self
.
_namespace
)
self
.
margin
=
envs
.
get_global_env
(
"margin"
,
None
,
self
.
_namespace
)
self
.
neg_size
=
envs
.
get_global_env
(
"neg_size"
,
None
,
self
.
_namespace
)
def
train_net
(
self
):
""" network definition """
...
...
@@ -96,11 +96,9 @@ class Model(ModelBase):
return
self
.
metrics
def
optimizer
(
self
):
learning_rate
=
0.01
#
envs.get_global_env("hyper_parameters.base_lr", None, self._namespace)
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.base_lr"
,
None
,
self
.
_namespace
)
sgd_optimizer
=
fluid
.
optimizer
.
Adagrad
(
learning_rate
=
learning_rate
)
#sgd_optimizer.minimize(avg_cost)
return
sgd_optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
train_net
()
models/contentunderstanding/tagspace/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -19,11 +19,12 @@ import numpy as np
from
paddlerec.core.reader
import
Reader
class
TrainReader
(
Reader
):
def
init
(
self
):
pass
def
_process_line
(
self
,
l
):
def
_process_line
(
self
,
l
):
tag_size
=
4
neg_size
=
3
l
=
l
.
strip
().
split
(
","
)
...
...
@@ -46,10 +47,7 @@ class TrainReader(Reader):
neg_index
=
rand_i
neg_tag
.
append
(
neg_index
)
sum_n
+=
1
# if n > 0 and len(text) > n:
# #yield None
# return None, None, None
return
text
,
pos_tag
,
neg_tag
return
text
,
pos_tag
,
neg_tag
def
generate_sample
(
self
,
line
):
def
data_iter
():
...
...
@@ -58,4 +56,5 @@ class TrainReader(Reader):
yield
None
return
yield
[(
'text'
,
text
),
(
'pos_tag'
,
pos_tag
),
(
'neg_tag'
,
neg_tag
)]
return
data_iter
models/match/dssm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -24,11 +24,12 @@ class Model(ModelBase):
def
input
(
self
):
TRIGRAM_D
=
envs
.
get_global_env
(
"hyper_parameters.TRIGRAM_D"
,
None
,
self
.
_namespace
)
Neg
=
envs
.
get_global_env
(
"hyper_parameters.NEG"
,
None
,
self
.
_namespace
)
Neg
=
envs
.
get_global_env
(
"hyper_parameters.NEG"
,
None
,
self
.
_namespace
)
self
.
query
=
fluid
.
data
(
name
=
"query"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_pos
=
fluid
.
data
(
name
=
"doc_pos"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
doc_negs
=
[
fluid
.
data
(
name
=
"doc_neg_"
+
str
(
i
),
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
"float32"
,
lod_level
=
0
)
for
i
in
range
(
Neg
)]
self
.
doc_negs
=
[
fluid
.
data
(
name
=
"doc_neg_"
+
str
(
i
),
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
"float32"
,
lod_level
=
0
)
for
i
in
range
(
Neg
)]
self
.
_data_var
.
append
(
self
.
query
)
self
.
_data_var
.
append
(
self
.
doc_pos
)
for
input
in
self
.
doc_negs
:
...
...
@@ -37,40 +38,40 @@ class Model(ModelBase):
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
net
(
self
,
is_infer
=
False
):
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
hidden_layers
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
hidden_acts
=
envs
.
get_global_env
(
"hyper_parameters.fc_acts"
,
None
,
self
.
_namespace
)
def
fc
(
data
,
hidden_layers
,
hidden_acts
,
names
):
fc_inputs
=
[
data
]
for
i
in
range
(
len
(
hidden_layers
)):
xavier
=
fluid
.
initializer
.
Xavier
(
uniform
=
True
,
fan_in
=
fc_inputs
[
-
1
].
shape
[
1
],
fan_out
=
hidden_layers
[
i
])
out
=
fluid
.
layers
.
fc
(
input
=
fc_inputs
[
-
1
],
size
=
hidden_layers
[
i
],
act
=
hidden_acts
[
i
],
param_attr
=
xavier
,
bias_attr
=
xavier
,
name
=
names
[
i
])
fc_inputs
.
append
(
out
)
return
fc_inputs
[
-
1
]
query_fc
=
fc
(
self
.
query
,
hidden_layers
,
hidden_acts
,
[
'query_l1'
,
'query_l2'
,
'query_l3'
])
doc_pos_fc
=
fc
(
self
.
doc_pos
,
hidden_layers
,
hidden_acts
,
[
'doc_pos_l1'
,
'doc_pos_l2'
,
'doc_pos_l3'
])
self
.
R_Q_D_p
=
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_pos_fc
)
for
i
in
range
(
len
(
hidden_layers
)):
xavier
=
fluid
.
initializer
.
Xavier
(
uniform
=
True
,
fan_in
=
fc_inputs
[
-
1
].
shape
[
1
],
fan_out
=
hidden_layers
[
i
])
out
=
fluid
.
layers
.
fc
(
input
=
fc_inputs
[
-
1
],
size
=
hidden_layers
[
i
],
act
=
hidden_acts
[
i
],
param_attr
=
xavier
,
bias_attr
=
xavier
,
name
=
names
[
i
])
fc_inputs
.
append
(
out
)
return
fc_inputs
[
-
1
]
query_fc
=
fc
(
self
.
query
,
hidden_layers
,
hidden_acts
,
[
'query_l1'
,
'query_l2'
,
'query_l3'
])
doc_pos_fc
=
fc
(
self
.
doc_pos
,
hidden_layers
,
hidden_acts
,
[
'doc_pos_l1'
,
'doc_pos_l2'
,
'doc_pos_l3'
])
self
.
R_Q_D_p
=
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_pos_fc
)
if
is_infer
:
return
R_Q_D_ns
=
[]
for
i
,
doc_neg
in
enumerate
(
self
.
doc_negs
):
doc_neg_fc_i
=
fc
(
doc_neg
,
hidden_layers
,
hidden_acts
,
[
'doc_neg_l1_'
+
str
(
i
),
'doc_neg_l2_'
+
str
(
i
),
'doc_neg_l3_'
+
str
(
i
)])
for
i
,
doc_neg
in
enumerate
(
self
.
doc_negs
):
doc_neg_fc_i
=
fc
(
doc_neg
,
hidden_layers
,
hidden_acts
,
[
'doc_neg_l1_'
+
str
(
i
),
'doc_neg_l2_'
+
str
(
i
),
'doc_neg_l3_'
+
str
(
i
)])
R_Q_D_ns
.
append
(
fluid
.
layers
.
cos_sim
(
query_fc
,
doc_neg_fc_i
))
concat_Rs
=
fluid
.
layers
.
concat
(
input
=
[
self
.
R_Q_D_p
]
+
R_Q_D_ns
,
axis
=-
1
)
prob
=
fluid
.
layers
.
softmax
(
concat_Rs
,
axis
=
1
)
hit_prob
=
fluid
.
layers
.
slice
(
prob
,
axes
=
[
0
,
1
],
starts
=
[
0
,
0
],
ends
=
[
4
,
1
])
prob
=
fluid
.
layers
.
softmax
(
concat_Rs
,
axis
=
1
)
hit_prob
=
fluid
.
layers
.
slice
(
prob
,
axes
=
[
0
,
1
],
starts
=
[
0
,
0
],
ends
=
[
4
,
1
])
loss
=
-
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
log
(
hit_prob
))
self
.
avg_cost
=
fluid
.
layers
.
mean
(
x
=
loss
)
...
...
@@ -100,10 +101,10 @@ class Model(ModelBase):
self
.
doc_pos
=
fluid
.
data
(
name
=
"doc_pos"
,
shape
=
[
-
1
,
TRIGRAM_D
],
dtype
=
'float32'
,
lod_level
=
0
)
self
.
_infer_data_var
=
[
self
.
query
,
self
.
doc_pos
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
self
.
infer_input
()
self
.
net
(
is_infer
=
True
)
self
.
infer_results
()
self
.
infer_results
()
models/match/dssm/synthetic_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -37,7 +37,7 @@ class TrainReader(Reader):
neg_docs
=
[]
for
i
in
range
(
len
(
features
)
-
2
):
feature_names
.
append
(
'doc_neg_'
+
str
(
i
))
neg_docs
.
append
(
map
(
float
,
features
[
i
+
2
].
split
(
','
)))
neg_docs
.
append
(
map
(
float
,
features
[
i
+
2
].
split
(
','
)))
yield
zip
(
feature_names
,
[
query
]
+
[
pos_doc
]
+
neg_docs
)
...
...
models/match/multiview-simnet/evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,8 +18,8 @@ from paddlerec.core.utils import envs
class
EvaluateReader
(
Reader
):
def
init
(
self
):
self
.
query_slots
=
envs
.
get_global_env
(
"hyper_parameters.query_slots"
,
None
,
"train.model"
)
self
.
title_slots
=
envs
.
get_global_env
(
"hyper_parameters.title_slots"
,
None
,
"train.model"
)
self
.
query_slots
=
envs
.
get_global_env
(
"hyper_parameters.query_slots"
,
None
,
"train.model"
)
self
.
title_slots
=
envs
.
get_global_env
(
"hyper_parameters.title_slots"
,
None
,
"train.model"
)
self
.
all_slots
=
[]
for
i
in
range
(
self
.
query_slots
):
...
...
@@ -49,6 +49,7 @@ class EvaluateReader(Reader):
if
visit
:
self
.
_all_slots_dict
[
slot
][
0
]
=
False
else
:
output
[
index
][
1
].
append
(
padding
)
output
[
index
][
1
].
append
(
padding
)
yield
output
return
data_iter
models/match/multiview-simnet/generate_synthetic_data.py
浏览文件 @
7a3ec4e6
...
...
@@ -14,10 +14,12 @@
import
random
class
Dataset
:
def
__init__
(
self
):
pass
class
SyntheticDataset
(
Dataset
):
def
__init__
(
self
,
sparse_feature_dim
,
query_slot_num
,
title_slot_num
,
dataset_size
=
10000
):
# ids are randomly generated
...
...
@@ -39,7 +41,7 @@ class SyntheticDataset(Dataset):
for
i
in
range
(
self
.
query_slot_num
):
qslot
=
generate_ids
(
self
.
ids_per_slot
,
self
.
sparse_feature_dim
)
qslot
=
[
str
(
fea
)
+
':'
+
str
(
i
)
for
fea
in
qslot
]
qslot
=
[
str
(
fea
)
+
':'
+
str
(
i
)
for
fea
in
qslot
]
query_slots
+=
qslot
for
i
in
range
(
self
.
title_slot_num
):
pt_slot
=
generate_ids
(
self
.
ids_per_slot
,
...
...
@@ -50,7 +52,8 @@ class SyntheticDataset(Dataset):
for
i
in
range
(
self
.
title_slot_num
):
nt_slot
=
generate_ids
(
self
.
ids_per_slot
,
self
.
sparse_feature_dim
)
nt_slot
=
[
str
(
fea
)
+
':'
+
str
(
i
+
self
.
query_slot_num
+
self
.
title_slot_num
)
for
fea
in
nt_slot
]
nt_slot
=
[
str
(
fea
)
+
':'
+
str
(
i
+
self
.
query_slot_num
+
self
.
title_slot_num
)
for
fea
in
nt_slot
]
neg_title_slots
+=
nt_slot
yield
query_slots
+
pos_title_slots
+
neg_title_slots
else
:
...
...
@@ -67,6 +70,7 @@ class SyntheticDataset(Dataset):
def
test
(
self
):
return
self
.
_reader_creator
(
False
)
if
__name__
==
'__main__'
:
sparse_feature_dim
=
1000001
query_slots
=
1
...
...
@@ -75,7 +79,7 @@ if __name__ == '__main__':
dataset
=
SyntheticDataset
(
sparse_feature_dim
,
query_slots
,
title_slots
,
dataset_size
)
train_reader
=
dataset
.
train
()
test_reader
=
dataset
.
test
()
with
open
(
"data/train/train.txt"
,
'w'
)
as
fout
:
for
data
in
train_reader
():
fout
.
write
(
' '
.
join
(
data
))
...
...
models/match/multiview-simnet/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -19,6 +19,7 @@ import paddle.fluid.layers.control_flow as cf
from
paddlerec.core.utils
import
envs
from
paddlerec.core.model
import
Model
as
ModelBase
class
BowEncoder
(
object
):
""" bow-encoder """
...
...
@@ -94,13 +95,14 @@ class SimpleEncoderFactory(object):
rnn_encode
=
GrnnEncoder
(
hidden_size
=
enc_hid_size
)
return
rnn_encode
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
self
.
init_config
()
def
init_config
(
self
):
self
.
_fetch_interval
=
1
self
.
_fetch_interval
=
1
query_encoder
=
envs
.
get_global_env
(
"hyper_parameters.query_encoder"
,
None
,
self
.
_namespace
)
title_encoder
=
envs
.
get_global_env
(
"hyper_parameters.title_encoder"
,
None
,
self
.
_namespace
)
query_encode_dim
=
envs
.
get_global_env
(
"hyper_parameters.query_encode_dim"
,
None
,
self
.
_namespace
)
...
...
@@ -112,19 +114,19 @@ class Model(ModelBase):
factory
.
create
(
query_encoder
,
query_encode_dim
)
for
i
in
range
(
query_slots
)
]
self
.
title_encoders
=
[
self
.
title_encoders
=
[
factory
.
create
(
title_encoder
,
title_encode_dim
)
for
i
in
range
(
title_slots
)
]
self
.
emb_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.embedding_dim"
,
None
,
self
.
_namespace
)
self
.
emb_shape
=
[
self
.
emb_size
,
self
.
emb_dim
]
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
,
None
,
self
.
_namespace
)
self
.
margin
=
0.1
self
.
emb_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.embedding_dim"
,
None
,
self
.
_namespace
)
self
.
emb_shape
=
[
self
.
emb_size
,
self
.
emb_dim
]
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
,
None
,
self
.
_namespace
)
self
.
margin
=
0.1
def
input
(
self
,
is_train
=
True
):
self
.
q_slots
=
[
self
.
q_slots
=
[
fluid
.
data
(
name
=
"%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
query_encoders
))
...
...
@@ -135,22 +137,23 @@ class Model(ModelBase):
for
i
in
range
(
len
(
self
.
title_encoders
))
]
if
is_train
==
False
:
return
self
.
q_slots
+
self
.
pt_slots
if
is_train
==
False
:
return
self
.
q_slots
+
self
.
pt_slots
self
.
nt_slots
=
[
fluid
.
data
(
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
name
=
"%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
)),
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
]
return
self
.
q_slots
+
self
.
pt_slots
+
self
.
nt_slots
def
train_input
(
self
):
res
=
self
.
input
()
self
.
_data_var
=
res
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
if
self
.
_platform
!=
"LINUX"
or
use_dataloader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
...
...
@@ -158,15 +161,15 @@ class Model(ModelBase):
def
get_acc
(
self
,
x
,
y
):
less
=
tensor
.
cast
(
cf
.
less_than
(
x
,
y
),
dtype
=
'float32'
)
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
label_ones
=
fluid
.
layers
.
fill_constant_batch_size_like
(
input
=
x
,
dtype
=
'float32'
,
shape
=
[
-
1
,
1
],
value
=
1.0
)
correct
=
fluid
.
layers
.
reduce_sum
(
less
)
total
=
fluid
.
layers
.
reduce_sum
(
label_ones
)
total
=
fluid
.
layers
.
reduce_sum
(
label_ones
)
acc
=
fluid
.
layers
.
elementwise_div
(
correct
,
total
)
return
acc
return
acc
def
net
(
self
):
q_embs
=
[
q_embs
=
[
fluid
.
embedding
(
input
=
query
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
query
in
self
.
q_slots
...
...
@@ -181,8 +184,8 @@ class Model(ModelBase):
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
nt_slots
]
# encode each embedding field with encoder
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
...
...
@@ -198,7 +201,7 @@ class Model(ModelBase):
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
nt_concat
=
fluid
.
layers
.
concat
(
nt_encodes
)
# projection of hidden layer
# projection of hidden layer
q_hid
=
fluid
.
layers
.
fc
(
q_concat
,
size
=
self
.
hidden_size
,
param_attr
=
'q_fc.w'
,
...
...
@@ -216,7 +219,7 @@ class Model(ModelBase):
cos_pos
=
fluid
.
layers
.
cos_sim
(
q_hid
,
pt_hid
)
cos_neg
=
fluid
.
layers
.
cos_sim
(
q_hid
,
nt_hid
)
# pairwise hinge_loss
# pairwise hinge_loss
loss_part1
=
fluid
.
layers
.
elementwise_sub
(
tensor
.
fill_constant_batch_size_like
(
input
=
cos_pos
,
...
...
@@ -233,7 +236,7 @@ class Model(ModelBase):
loss_part2
)
self
.
avg_cost
=
fluid
.
layers
.
mean
(
loss_part3
)
self
.
acc
=
self
.
get_acc
(
cos_neg
,
cos_pos
)
self
.
acc
=
self
.
get_acc
(
cos_neg
,
cos_pos
)
def
avg_loss
(
self
):
self
.
_cost
=
self
.
avg_cost
...
...
@@ -250,19 +253,19 @@ class Model(ModelBase):
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
)
return
optimizer
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
learning_rate
)
return
optimizer
def
infer_input
(
self
):
res
=
self
.
input
(
is_train
=
False
)
self
.
_infer_data_var
=
res
self
.
_infer_data_var
=
res
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
# lookup embedding for each slot
self
.
infer_input
()
# lookup embedding for each slot
q_embs
=
[
fluid
.
embedding
(
input
=
query
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
...
...
@@ -273,14 +276,14 @@ class Model(ModelBase):
input
=
title
,
size
=
self
.
emb_shape
,
param_attr
=
"emb"
)
for
title
in
self
.
pt_slots
]
# encode each embedding field with encoder
# encode each embedding field with encoder
q_encodes
=
[
self
.
query_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
q_embs
)
]
pt_encodes
=
[
self
.
title_encoders
[
i
].
forward
(
emb
)
for
i
,
emb
in
enumerate
(
pt_embs
)
]
# concat multi view for query, pos_title, neg_title
# concat multi view for query, pos_title, neg_title
q_concat
=
fluid
.
layers
.
concat
(
q_encodes
)
pt_concat
=
fluid
.
layers
.
concat
(
pt_encodes
)
# projection of hidden layer
...
...
models/match/multiview-simnet/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,8 +18,8 @@ from paddlerec.core.utils import envs
class
TrainReader
(
Reader
):
def
init
(
self
):
self
.
query_slots
=
envs
.
get_global_env
(
"hyper_parameters.query_slots"
,
None
,
"train.model"
)
self
.
title_slots
=
envs
.
get_global_env
(
"hyper_parameters.title_slots"
,
None
,
"train.model"
)
self
.
query_slots
=
envs
.
get_global_env
(
"hyper_parameters.query_slots"
,
None
,
"train.model"
)
self
.
title_slots
=
envs
.
get_global_env
(
"hyper_parameters.title_slots"
,
None
,
"train.model"
)
self
.
all_slots
=
[]
for
i
in
range
(
self
.
query_slots
):
...
...
@@ -52,6 +52,7 @@ class TrainReader(Reader):
if
visit
:
self
.
_all_slots_dict
[
slot
][
0
]
=
False
else
:
output
[
index
][
1
].
append
(
padding
)
output
[
index
][
1
].
append
(
padding
)
yield
output
return
data_iter
models/multitask/esmm/esmm_infer_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -18,14 +18,14 @@ from collections import defaultdict
from
paddlerec.core.reader
import
Reader
class
EvaluateReader
(
Reader
):
def
init
(
self
):
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
'205'
,
'206'
,
'207'
,
'210'
,
'216'
,
'508'
,
'509'
,
'702'
,
'853'
,
'301'
]
self
.
all_field_id_dict
=
defaultdict
(
int
)
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
def
generate_sample
(
self
,
line
):
"""
...
...
@@ -39,25 +39,26 @@ class EvaluateReader(Reader):
features
=
line
.
strip
().
split
(
','
)
ctr
=
int
(
features
[
1
])
cvr
=
int
(
features
[
2
])
padding
=
0
output
=
[(
field_id
,[])
for
field_id
in
self
.
all_field_id_dict
]
output
=
[(
field_id
,
[])
for
field_id
in
self
.
all_field_id_dict
]
for
elem
in
features
[
4
:]:
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
if
field_id
not
in
self
.
all_field_id_dict
:
continue
self
.
all_field_id_dict
[
field_id
][
0
]
=
True
index
=
self
.
all_field_id_dict
[
field_id
][
1
]
output
[
index
][
1
].
append
(
int
(
feat_id
))
output
[
index
][
1
].
append
(
int
(
feat_id
))
for
field_id
in
self
.
all_field_id_dict
:
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
if
visited
:
self
.
all_field_id_dict
[
field_id
][
0
]
=
False
else
:
output
[
index
][
1
].
append
(
padding
)
output
[
index
][
1
].
append
(
padding
)
output
.
append
((
'ctr'
,
[
ctr
]))
output
.
append
((
'cvr'
,
[
cvr
]))
yield
output
return
reader
models/multitask/esmm/esmm_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -21,11 +21,12 @@ from paddlerec.core.reader import Reader
class
TrainReader
(
Reader
):
def
init
(
self
):
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
all_field_id
=
[
'101'
,
'109_14'
,
'110_14'
,
'127_14'
,
'150_14'
,
'121'
,
'122'
,
'124'
,
'125'
,
'126'
,
'127'
,
'128'
,
'129'
,
'205'
,
'206'
,
'207'
,
'210'
,
'216'
,
'508'
,
'509'
,
'702'
,
'853'
,
'301'
]
self
.
all_field_id_dict
=
defaultdict
(
int
)
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
for
i
,
field_id
in
enumerate
(
all_field_id
):
self
.
all_field_id_dict
[
field_id
]
=
[
False
,
i
]
def
generate_sample
(
self
,
line
):
"""
...
...
@@ -37,30 +38,31 @@ class TrainReader(Reader):
This function needs to be implemented by the user, based on data format
"""
features
=
line
.
strip
().
split
(
','
)
#ctr = list(map(int, features[1]))
#cvr = list(map(int, features[2]))
#
ctr = list(map(int, features[1]))
#
cvr = list(map(int, features[2]))
ctr
=
int
(
features
[
1
])
cvr
=
int
(
features
[
2
])
padding
=
0
output
=
[(
field_id
,[])
for
field_id
in
self
.
all_field_id_dict
]
output
=
[(
field_id
,
[])
for
field_id
in
self
.
all_field_id_dict
]
for
elem
in
features
[
4
:]:
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
field_id
,
feat_id
=
elem
.
strip
().
split
(
':'
)
if
field_id
not
in
self
.
all_field_id_dict
:
continue
self
.
all_field_id_dict
[
field_id
][
0
]
=
True
index
=
self
.
all_field_id_dict
[
field_id
][
1
]
#
feat_id = list(map(int, feat_id))
output
[
index
][
1
].
append
(
int
(
feat_id
))
#
feat_id = list(map(int, feat_id))
output
[
index
][
1
].
append
(
int
(
feat_id
))
for
field_id
in
self
.
all_field_id_dict
:
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
visited
,
index
=
self
.
all_field_id_dict
[
field_id
]
if
visited
:
self
.
all_field_id_dict
[
field_id
][
0
]
=
False
else
:
output
[
index
][
1
].
append
(
padding
)
output
[
index
][
1
].
append
(
padding
)
output
.
append
((
'ctr'
,
[
ctr
]))
output
.
append
((
'cvr'
,
[
cvr
]))
yield
output
return
reader
models/multitask/esmm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -23,71 +23,73 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
fc
(
self
,
tag
,
data
,
out_dim
,
active
=
'prelu'
):
def
fc
(
self
,
tag
,
data
,
out_dim
,
active
=
'prelu'
):
init_stddev
=
1.0
scales
=
1.0
/
np
.
sqrt
(
data
.
shape
[
1
])
scales
=
1.0
/
np
.
sqrt
(
data
.
shape
[
1
])
p_attr
=
fluid
.
param_attr
.
ParamAttr
(
name
=
'%s_weight'
%
tag
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
init_stddev
*
scales
))
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
init_stddev
*
scales
))
b_attr
=
fluid
.
ParamAttr
(
name
=
'%s_bias'
%
tag
,
initializer
=
fluid
.
initializer
.
Constant
(
0.1
))
out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
out_dim
,
act
=
active
,
param_attr
=
p_attr
,
bias_attr
=
b_attr
,
name
=
tag
)
size
=
out_dim
,
act
=
active
,
param_attr
=
p_attr
,
bias_attr
=
b_attr
,
name
=
tag
)
return
out
def
input_data
(
self
):
sparse_input_ids
=
[
fluid
.
data
(
name
=
"field_"
+
str
(
i
),
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
for
i
in
range
(
0
,
23
)
fluid
.
data
(
name
=
"field_"
+
str
(
i
),
shape
=
[
-
1
,
1
],
dtype
=
"int64"
,
lod_level
=
1
)
for
i
in
range
(
0
,
23
)
]
label_ctr
=
fluid
.
data
(
name
=
"ctr"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
)
label_cvr
=
fluid
.
data
(
name
=
"cvr"
,
shape
=
[
-
1
,
1
],
dtype
=
"int64"
)
inputs
=
sparse_input_ids
+
[
label_ctr
]
+
[
label_cvr
]
self
.
_data_var
.
extend
(
inputs
)
return
inputs
def
net
(
self
,
inputs
,
is_infer
=
False
):
vocab_size
=
envs
.
get_global_env
(
"hyper_parameters.vocab_size"
,
None
,
self
.
_namespace
)
embed_size
=
envs
.
get_global_env
(
"hyper_parameters.embed_size"
,
None
,
self
.
_namespace
)
emb
=
[]
for
data
in
inputs
[
0
:
-
2
]:
feat_emb
=
fluid
.
embedding
(
input
=
data
,
size
=
[
vocab_size
,
embed_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
'dis_emb'
,
learning_rate
=
5
,
initializer
=
fluid
.
initializer
.
Xavier
(
fan_in
=
embed_size
,
fan_out
=
embed_size
)
),
is_sparse
=
True
)
field_emb
=
fluid
.
layers
.
sequence_pool
(
input
=
feat_emb
,
pool_type
=
'sum'
)
size
=
[
vocab_size
,
embed_size
],
param_attr
=
fluid
.
ParamAttr
(
name
=
'dis_emb'
,
learning_rate
=
5
,
initializer
=
fluid
.
initializer
.
Xavier
(
fan_in
=
embed_size
,
fan_out
=
embed_size
)
),
is_sparse
=
True
)
field_emb
=
fluid
.
layers
.
sequence_pool
(
input
=
feat_emb
,
pool_type
=
'sum'
)
emb
.
append
(
field_emb
)
concat_emb
=
fluid
.
layers
.
concat
(
emb
,
axis
=
1
)
# ctr
active
=
'relu'
ctr_fc1
=
self
.
fc
(
'ctr_fc1'
,
concat_emb
,
200
,
active
)
ctr_fc2
=
self
.
fc
(
'ctr_fc2'
,
ctr_fc1
,
80
,
active
)
ctr_out
=
self
.
fc
(
'ctr_out'
,
ctr_fc2
,
2
,
'softmax'
)
# cvr
cvr_fc1
=
self
.
fc
(
'cvr_fc1'
,
concat_emb
,
200
,
active
)
cvr_fc2
=
self
.
fc
(
'cvr_fc2'
,
cvr_fc1
,
80
,
active
)
cvr_out
=
self
.
fc
(
'cvr_out'
,
cvr_fc2
,
2
,
'softmax'
)
cvr_out
=
self
.
fc
(
'cvr_out'
,
cvr_fc2
,
2
,
'softmax'
)
ctr_clk
=
inputs
[
-
2
]
ctcvr_buy
=
inputs
[
-
1
]
ctr_prop_one
=
fluid
.
layers
.
slice
(
ctr_out
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
cvr_prop_one
=
fluid
.
layers
.
slice
(
cvr_out
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
ctcvr_prop_one
=
fluid
.
layers
.
elementwise_mul
(
ctr_prop_one
,
cvr_prop_one
)
ctcvr_prop
=
fluid
.
layers
.
concat
(
input
=
[
1
-
ctcvr_prop_one
,
ctcvr_prop_one
],
axis
=
1
)
ctcvr_prop
=
fluid
.
layers
.
concat
(
input
=
[
1
-
ctcvr_prop_one
,
ctcvr_prop_one
],
axis
=
1
)
auc_ctr
,
batch_auc_ctr
,
auc_states_ctr
=
fluid
.
layers
.
auc
(
input
=
ctr_out
,
label
=
ctr_clk
)
auc_ctcvr
,
batch_auc_ctcvr
,
auc_states_ctcvr
=
fluid
.
layers
.
auc
(
input
=
ctcvr_prop
,
label
=
ctcvr_buy
)
...
...
@@ -97,27 +99,23 @@ class Model(ModelBase):
self
.
_infer_results
[
"AUC_ctcvr"
]
=
auc_ctcvr
return
loss_ctr
=
fluid
.
layers
.
cross_entropy
(
input
=
ctr_out
,
label
=
ctr_clk
)
loss_ctcvr
=
fluid
.
layers
.
cross_entropy
(
input
=
ctcvr_prop
,
label
=
ctcvr_buy
)
cost
=
loss_ctr
+
loss_ctcvr
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
_cost
=
avg_cost
self
.
_metrics
[
"AUC_ctr"
]
=
auc_ctr
self
.
_metrics
[
"BATCH_AUC_ctr"
]
=
batch_auc_ctr
self
.
_metrics
[
"AUC_ctcvr"
]
=
auc_ctcvr
self
.
_metrics
[
"BATCH_AUC_ctcvr"
]
=
batch_auc_ctcvr
def
train_net
(
self
):
input_data
=
self
.
input_data
()
self
.
net
(
input_data
)
def
infer_net
(
self
):
self
.
_infer_data_var
=
self
.
input_data
()
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
net
(
self
.
_infer_data_var
,
is_infer
=
True
)
models/multitask/mmoe/census_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -43,8 +43,8 @@ class TrainReader(Reader):
label_marital
=
[
1
,
0
]
elif
int
(
l
[
0
])
==
1
:
label_marital
=
[
0
,
1
]
#label_income = np.array(label_income)
#label_marital = np.array(label_marital)
#
label_income = np.array(label_income)
#
label_marital = np.array(label_marital)
feature_name
=
[
"input"
,
"label_income"
,
"label_marital"
]
yield
zip
(
feature_name
,
[
data
]
+
[
label_income
]
+
[
label_marital
])
...
...
models/multitask/mmoe/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -36,22 +36,21 @@ class Model(ModelBase):
if
is_infer
:
self
.
_infer_data_var
=
[
input_data
,
label_income
,
label_marital
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
_data_var
.
extend
([
input_data
,
label_income
,
label_marital
])
# f_{i}(x) = activation(W_{i} * x + b), where activation is ReLU according to the paper
expert_outputs
=
[]
for
i
in
range
(
0
,
expert_num
):
expert_output
=
fluid
.
layers
.
fc
(
input
=
input_data
,
size
=
expert_size
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
),
name
=
'expert_'
+
str
(
i
))
size
=
expert_size
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
),
name
=
'expert_'
+
str
(
i
))
expert_outputs
.
append
(
expert_output
)
expert_concat
=
fluid
.
layers
.
concat
(
expert_outputs
,
axis
=
1
)
expert_concat
=
fluid
.
layers
.
reshape
(
expert_concat
,[
-
1
,
expert_num
,
expert_size
])
expert_concat
=
fluid
.
layers
.
reshape
(
expert_concat
,
[
-
1
,
expert_num
,
expert_size
])
# g^{k}(x) = activation(W_{gk} * x + b), where activation is softmax according to the paper
output_layers
=
[]
for
i
in
range
(
0
,
gate_num
):
...
...
@@ -61,52 +60,53 @@ class Model(ModelBase):
bias_attr
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
),
name
=
'gate_'
+
str
(
i
))
# f^{k}(x) = sum_{i=1}^{n}(g^{k}(x)_{i} * f_{i}(x))
cur_gate_expert
=
fluid
.
layers
.
elementwise_mul
(
expert_concat
,
cur_gate
,
axis
=
0
)
cur_gate_expert
=
fluid
.
layers
.
elementwise_mul
(
expert_concat
,
cur_gate
,
axis
=
0
)
cur_gate_expert
=
fluid
.
layers
.
reduce_sum
(
cur_gate_expert
,
dim
=
1
)
# Build tower layer
cur_tower
=
fluid
.
layers
.
fc
(
input
=
cur_gate_expert
,
size
=
tower_size
,
act
=
'relu'
,
name
=
'task_layer_'
+
str
(
i
))
out
=
fluid
.
layers
.
fc
(
input
=
cur_tower
,
size
=
2
,
act
=
'softmax'
,
name
=
'out_'
+
str
(
i
))
cur_tower
=
fluid
.
layers
.
fc
(
input
=
cur_gate_expert
,
size
=
tower_size
,
act
=
'relu'
,
name
=
'task_layer_'
+
str
(
i
))
out
=
fluid
.
layers
.
fc
(
input
=
cur_tower
,
size
=
2
,
act
=
'softmax'
,
name
=
'out_'
+
str
(
i
))
output_layers
.
append
(
out
)
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
if
is_infer
:
self
.
_infer_results
[
"AUC_income"
]
=
auc_income
self
.
_infer_results
[
"AUC_marital"
]
=
auc_marital
return
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
avg_cost_income
=
fluid
.
layers
.
mean
(
x
=
cost_income
)
avg_cost_marital
=
fluid
.
layers
.
mean
(
x
=
cost_marital
)
cost
=
avg_cost_income
+
avg_cost_marital
cost
=
avg_cost_income
+
avg_cost_marital
self
.
_cost
=
cost
self
.
_metrics
[
"AUC_income"
]
=
auc_income
self
.
_metrics
[
"BATCH_AUC_income"
]
=
batch_auc_1
self
.
_metrics
[
"AUC_marital"
]
=
auc_marital
self
.
_metrics
[
"BATCH_AUC_marital"
]
=
batch_auc_2
def
train_net
(
self
):
self
.
MMOE
()
def
infer_net
(
self
):
self
.
MMOE
(
is_infer
=
True
)
models/multitask/share-bottom/census_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -43,8 +43,8 @@ class TrainReader(Reader):
label_marital
=
[
1
,
0
]
elif
int
(
l
[
0
])
==
1
:
label_marital
=
[
0
,
1
]
#label_income = np.array(label_income)
#label_marital = np.array(label_marital)
#
label_income = np.array(label_income)
#
label_marital = np.array(label_marital)
feature_name
=
[
"input"
,
"label_income"
,
"label_marital"
]
yield
zip
(
feature_name
,
[
data
]
+
[
label_income
]
+
[
label_marital
])
...
...
models/multitask/share-bottom/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -32,65 +32,65 @@ class Model(ModelBase):
input_data
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
-
1
,
feature_size
],
dtype
=
"float32"
)
label_income
=
fluid
.
data
(
name
=
"label_income"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
,
lod_level
=
0
)
label_marital
=
fluid
.
data
(
name
=
"label_marital"
,
shape
=
[
-
1
,
2
],
dtype
=
"float32"
,
lod_level
=
0
)
if
is_infer
:
self
.
_infer_data_var
=
[
input_data
,
label_income
,
label_marital
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
self
.
_data_var
.
extend
([
input_data
,
label_income
,
label_marital
])
bottom_output
=
fluid
.
layers
.
fc
(
input
=
input_data
,
size
=
bottom_size
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
),
name
=
'bottom_output'
)
size
=
bottom_size
,
act
=
'relu'
,
bias_attr
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
),
name
=
'bottom_output'
)
# Build tower layer from bottom layer
output_layers
=
[]
for
index
in
range
(
tower_nums
):
for
index
in
range
(
tower_nums
):
tower_layer
=
fluid
.
layers
.
fc
(
input
=
bottom_output
,
size
=
tower_size
,
act
=
'relu'
,
name
=
'task_layer_'
+
str
(
index
))
size
=
tower_size
,
act
=
'relu'
,
name
=
'task_layer_'
+
str
(
index
))
output_layer
=
fluid
.
layers
.
fc
(
input
=
tower_layer
,
size
=
2
,
act
=
'softmax'
,
name
=
'output_layer_'
+
str
(
index
))
size
=
2
,
act
=
'softmax'
,
name
=
'output_layer_'
+
str
(
index
))
output_layers
.
append
(
output_layer
)
pred_income
=
fluid
.
layers
.
clip
(
output_layers
[
0
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
pred_marital
=
fluid
.
layers
.
clip
(
output_layers
[
1
],
min
=
1e-15
,
max
=
1.0
-
1e-15
)
label_income_1
=
fluid
.
layers
.
slice
(
label_income
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
label_marital_1
=
fluid
.
layers
.
slice
(
label_marital
,
axes
=
[
1
],
starts
=
[
1
],
ends
=
[
2
])
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
auc_income
,
batch_auc_1
,
auc_states_1
=
fluid
.
layers
.
auc
(
input
=
pred_income
,
label
=
fluid
.
layers
.
cast
(
x
=
label_income_1
,
dtype
=
'int64'
))
auc_marital
,
batch_auc_2
,
auc_states_2
=
fluid
.
layers
.
auc
(
input
=
pred_marital
,
label
=
fluid
.
layers
.
cast
(
x
=
label_marital_1
,
dtype
=
'int64'
))
if
is_infer
:
self
.
_infer_results
[
"AUC_income"
]
=
auc_income
self
.
_infer_results
[
"AUC_marital"
]
=
auc_marital
return
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost_income
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_income
,
label
=
label_income
,
soft_label
=
True
)
cost_marital
=
fluid
.
layers
.
cross_entropy
(
input
=
pred_marital
,
label
=
label_marital
,
soft_label
=
True
)
cost
=
fluid
.
layers
.
elementwise_add
(
cost_income
,
cost_marital
,
axis
=
1
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
self
.
_cost
=
avg_cost
self
.
_metrics
[
"AUC_income"
]
=
auc_income
self
.
_metrics
[
"BATCH_AUC_income"
]
=
batch_auc_1
self
.
_metrics
[
"AUC_marital"
]
=
auc_marital
self
.
_metrics
[
"BATCH_AUC_marital"
]
=
batch_auc_2
def
train_net
(
self
):
self
.
model
()
def
infer_net
(
self
):
self
.
model
(
is_infer
=
True
)
models/rank/dcn/criteo_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -21,7 +21,6 @@ try:
except
ImportError
:
import
pickle
from
paddlerec.core.reader
import
Reader
from
paddlerec.core.utils
import
envs
...
...
@@ -47,7 +46,7 @@ class TrainReader(Reader):
self
.
label_feat_names
=
target
+
dense_feat_names
+
sparse_feat_names
self
.
cat_feat_idx_dict_list
=
[{}
for
_
in
range
(
26
)]
# TODO: set vocabulary dictionary
vocab_dir
=
envs
.
get_global_env
(
"feat_dict_name"
,
None
,
"train.reader"
)
for
i
in
range
(
26
):
...
...
@@ -55,7 +54,7 @@ class TrainReader(Reader):
for
line
in
open
(
os
.
path
.
join
(
vocab_dir
,
'C'
+
str
(
i
+
1
)
+
'.txt'
)):
self
.
cat_feat_idx_dict_list
[
i
][
line
.
strip
()]
=
lookup_idx
lookup_idx
+=
1
lookup_idx
+=
1
def
_process_line
(
self
,
line
):
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
...
...
@@ -73,20 +72,21 @@ class TrainReader(Reader):
if
idx
==
2
else
math
.
log
(
1
+
float
(
features
[
idx
])))
for
idx
in
self
.
cat_idx_
:
if
features
[
idx
]
==
''
or
features
[
idx
]
not
in
self
.
cat_feat_idx_dict_list
[
idx
-
14
]:
idx
]
not
in
self
.
cat_feat_idx_dict_list
[
idx
-
14
]:
label_feat_list
[
idx
].
append
(
0
)
else
:
label_feat_list
[
idx
].
append
(
self
.
cat_feat_idx_dict_list
[
idx
-
14
][
features
[
idx
]])
idx
-
14
][
features
[
idx
]])
label_feat_list
[
0
].
append
(
int
(
features
[
0
]))
return
label_feat_list
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
label_feat_list
=
self
.
_process_line
(
line
)
yield
list
(
zip
(
self
.
label_feat_names
,
label_feat_list
))
return
data_iter
\ No newline at end of file
return
data_iter
models/rank/dcn/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -23,7 +23,7 @@ from paddlerec.core.model import Model as ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
init_network
(
self
):
self
.
cross_num
=
envs
.
get_global_env
(
"hyper_parameters.cross_num"
,
None
,
self
.
_namespace
)
self
.
dnn_hidden_units
=
envs
.
get_global_env
(
"hyper_parameters.dnn_hidden_units"
,
None
,
self
.
_namespace
)
...
...
@@ -50,7 +50,7 @@ class Model(ModelBase):
self
.
net_input
=
None
self
.
loss
=
None
def
_create_embedding_input
(
self
,
data_dict
):
# sparse embedding
sparse_emb_dict
=
OrderedDict
((
name
,
fluid
.
embedding
(
...
...
@@ -78,7 +78,7 @@ class Model(ModelBase):
net_input
=
fluid
.
layers
.
concat
([
dense_input
,
sparse_input
],
axis
=-
1
)
return
net_input
def
_deep_net
(
self
,
input
,
hidden_units
,
use_bn
=
False
,
is_test
=
False
):
for
units
in
hidden_units
:
input
=
fluid
.
layers
.
fc
(
input
=
input
,
size
=
units
)
...
...
@@ -95,7 +95,7 @@ class Model(ModelBase):
[
input_dim
],
dtype
=
'float32'
,
name
=
prefix
+
"_b"
)
xw
=
fluid
.
layers
.
reduce_sum
(
x
*
w
,
dim
=
1
,
keep_dim
=
True
)
# (N, 1)
return
x0
*
xw
+
b
+
x
,
w
def
_cross_net
(
self
,
input
,
num_corss_layers
):
x
=
x0
=
input
l2_reg_cross_list
=
[]
...
...
@@ -106,10 +106,10 @@ class Model(ModelBase):
fluid
.
layers
.
concat
(
l2_reg_cross_list
,
axis
=-
1
))
return
x
,
l2_reg_cross_loss
def
_l2_loss
(
self
,
w
):
return
fluid
.
layers
.
reduce_sum
(
fluid
.
layers
.
square
(
w
))
def
train_net
(
self
):
self
.
init_network
()
self
.
target_input
=
fluid
.
data
(
...
...
@@ -118,14 +118,14 @@ class Model(ModelBase):
for
feat_name
in
self
.
feat_dims_dict
:
data_dict
[
feat_name
]
=
fluid
.
data
(
name
=
feat_name
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
self
.
net_input
=
self
.
_create_embedding_input
(
data_dict
)
deep_out
=
self
.
_deep_net
(
self
.
net_input
,
self
.
dnn_hidden_units
,
self
.
dnn_use_bn
,
False
)
cross_out
,
l2_reg_cross_loss
=
self
.
_cross_net
(
self
.
net_input
,
self
.
cross_num
)
self
.
cross_num
)
last_out
=
fluid
.
layers
.
concat
([
deep_out
,
cross_out
],
axis
=-
1
)
logit
=
fluid
.
layers
.
fc
(
last_out
,
1
)
...
...
@@ -141,7 +141,6 @@ class Model(ModelBase):
input
=
prob_2d
,
label
=
label_int
,
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
# logloss
logloss
=
fluid
.
layers
.
log_loss
(
self
.
prob
,
self
.
target_input
)
...
...
models/rank/deepfm/criteo_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -38,7 +38,7 @@ class TrainReader(Reader):
self
.
categorical_range_
=
range
(
14
,
40
)
# load preprocessed feature dict
self
.
feat_dict_name
=
envs
.
get_global_env
(
"feat_dict_name"
,
None
,
"train.reader"
)
self
.
feat_dict_
=
pickle
.
load
(
open
(
self
.
feat_dict_name
,
'rb'
))
self
.
feat_dict_
=
pickle
.
load
(
open
(
self
.
feat_dict_name
,
'rb'
))
def
_process_line
(
self
,
line
):
features
=
line
.
rstrip
(
'
\n
'
).
split
(
'
\t
'
)
...
...
@@ -62,13 +62,14 @@ class TrainReader(Reader):
feat_value
.
append
(
1.0
)
label
=
[
int
(
features
[
0
])]
return
feat_idx
,
feat_value
,
label
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
feat_idx
,
feat_value
,
label
=
self
.
_process_line
(
line
)
yield
[(
'feat_idx'
,
feat_idx
),
(
'feat_value'
,
feat_value
),
(
'label'
,
label
)]
return
data_iter
\ No newline at end of file
return
data_iter
models/rank/deepfm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -29,26 +29,27 @@ class Model(ModelBase):
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
# ------------------------- network input --------------------------
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
,
self
.
_namespace
)
raw_feat_idx
=
fluid
.
data
(
name
=
'feat_idx'
,
shape
=
[
None
,
num_field
],
dtype
=
'int64'
)
# None * num_field(defalut:39)
raw_feat_value
=
fluid
.
data
(
name
=
'feat_value'
,
shape
=
[
None
,
num_field
],
dtype
=
'float32'
)
# None * num_field
raw_feat_idx
=
fluid
.
data
(
name
=
'feat_idx'
,
shape
=
[
None
,
num_field
],
dtype
=
'int64'
)
# None * num_field(defalut:39)
raw_feat_value
=
fluid
.
data
(
name
=
'feat_value'
,
shape
=
[
None
,
num_field
],
dtype
=
'float32'
)
# None * num_field
self
.
label
=
fluid
.
data
(
name
=
'label'
,
shape
=
[
None
,
1
],
dtype
=
'float32'
)
# None * 1
feat_idx
=
fluid
.
layers
.
reshape
(
raw_feat_idx
,[
-
1
,
1
])
# (None * num_field) * 1
feat_idx
=
fluid
.
layers
.
reshape
(
raw_feat_idx
,
[
-
1
,
1
])
# (None * num_field) * 1
feat_value
=
fluid
.
layers
.
reshape
(
raw_feat_value
,
[
-
1
,
num_field
,
1
])
# None * num_field * 1
# ------------------------- set _data_var --------------------------
self
.
_data_var
.
append
(
raw_feat_idx
)
self
.
_data_var
.
append
(
raw_feat_value
)
self
.
_data_var
.
append
(
self
.
label
)
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
#------------------------- first order term --------------------------
#
------------------------- first order term --------------------------
reg
=
envs
.
get_global_env
(
"hyper_parameters.reg"
,
1e-4
,
self
.
_namespace
)
first_weights_re
=
fluid
.
embedding
(
...
...
@@ -66,7 +67,7 @@ class Model(ModelBase):
first_weights_re
,
shape
=
[
-
1
,
num_field
,
1
])
# None * num_field * 1
y_first_order
=
fluid
.
layers
.
reduce_sum
((
first_weights
*
feat_value
),
1
)
#------------------------- second order term --------------------------
#
------------------------- second order term --------------------------
feat_embeddings_re
=
fluid
.
embedding
(
input
=
feat_idx
,
...
...
@@ -81,12 +82,12 @@ class Model(ModelBase):
feat_embeddings
=
fluid
.
layers
.
reshape
(
feat_embeddings_re
,
shape
=
[
-
1
,
num_field
,
sparse_feature_dim
])
# None * num_field * embedding_size
sparse_feature_dim
])
# None * num_field * embedding_size
feat_embeddings
=
feat_embeddings
*
feat_value
# None * num_field * embedding_size
# sum_square part
summed_features_emb
=
fluid
.
layers
.
reduce_sum
(
feat_embeddings
,
1
)
# None * embedding_size
1
)
# None * embedding_size
summed_features_emb_square
=
fluid
.
layers
.
square
(
summed_features_emb
)
# None * embedding_size
...
...
@@ -100,13 +101,12 @@ class Model(ModelBase):
summed_features_emb_square
-
squared_sum_features_emb
,
1
,
keep_dim
=
True
)
# None * 1
#------------------------- DNN --------------------------
# ------------------------- DNN --------------------------
layer_sizes
=
envs
.
get_global_env
(
"hyper_parameters.fc_sizes"
,
None
,
self
.
_namespace
)
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
,
self
.
_namespace
)
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
num_field
*
sparse_feature_dim
])
[
-
1
,
num_field
*
sparse_feature_dim
])
for
s
in
layer_sizes
:
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
...
...
@@ -128,28 +128,28 @@ class Model(ModelBase):
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)))
#------------------------- DeepFM --------------------------
#
------------------------- DeepFM --------------------------
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_first_order
+
y_second_order
+
y_dnn
)
def
train_net
(
self
):
self
.
deepfm_net
()
#------------------------- Cost(logloss) --------------------------
#
------------------------- Cost(logloss) --------------------------
cost
=
fluid
.
layers
.
log_loss
(
input
=
self
.
predict
,
label
=
self
.
label
)
avg_cost
=
fluid
.
layers
.
reduce_sum
(
cost
)
self
.
_cost
=
avg_cost
#------------------------- Metric(Auc) --------------------------
#
------------------------- Metric(Auc) --------------------------
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
auc_var
,
batch_auc_var
,
_
=
fluid
.
layers
.
auc
(
input
=
predict_2d
,
label
=
label_int
,
slide_steps
=
0
)
label
=
label_int
,
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
...
...
@@ -159,4 +159,4 @@ class Model(ModelBase):
return
optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
deepfm_net
()
\ No newline at end of file
self
.
deepfm_net
()
models/rank/din/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -32,9 +32,9 @@ class TrainReader(Reader):
self
.
train_data_path
=
envs
.
get_global_env
(
"train_data_path"
,
None
,
"train.reader"
)
self
.
res
=
[]
self
.
max_len
=
0
data_file_list
=
os
.
listdir
(
self
.
train_data_path
)
for
i
in
range
(
0
,
len
(
data_file_list
)):
for
i
in
range
(
0
,
len
(
data_file_list
)):
train_data_file
=
os
.
path
.
join
(
self
.
train_data_path
,
data_file_list
[
i
])
with
open
(
train_data_file
,
"r"
)
as
fin
:
for
line
in
fin
:
...
...
@@ -47,9 +47,6 @@ class TrainReader(Reader):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
32
,
"train.reader"
)
self
.
group_size
=
self
.
batch_size
*
20
def
_process_line
(
self
,
line
):
line
=
line
.
strip
().
split
(
';'
)
hist
=
line
[
0
].
split
()
...
...
@@ -58,22 +55,22 @@ class TrainReader(Reader):
cate
=
[
int
(
i
)
for
i
in
cate
]
return
[
hist
,
cate
,
[
int
(
line
[
2
])],
[
int
(
line
[
3
])],
[
float
(
line
[
4
])]]
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
#feat_idx, feat_value, label = self._process_line(line)
#
feat_idx, feat_value, label = self._process_line(line)
yield
self
.
_process_line
(
line
)
return
data_iter
def
pad_batch_data
(
self
,
input
,
max_len
):
res
=
np
.
array
([
x
+
[
0
]
*
(
max_len
-
len
(
x
))
for
x
in
input
])
res
=
res
.
astype
(
"int64"
).
reshape
([
-
1
,
max_len
])
return
res
def
make_data
(
self
,
b
):
max_len
=
max
(
len
(
x
[
0
])
for
x
in
b
)
item
=
self
.
pad_batch_data
([
x
[
0
]
for
x
in
b
],
max_len
)
...
...
@@ -81,7 +78,7 @@ class TrainReader(Reader):
len_array
=
[
len
(
x
[
0
])
for
x
in
b
]
mask
=
np
.
array
(
[[
0
]
*
x
+
[
-
1e9
]
*
(
max_len
-
x
)
for
x
in
len_array
]).
reshape
(
[
-
1
,
max_len
,
1
])
[
-
1
,
max_len
,
1
])
target_item_seq
=
np
.
array
(
[[
x
[
2
]]
*
max_len
for
x
in
b
]).
astype
(
"int64"
).
reshape
([
-
1
,
max_len
])
target_cat_seq
=
np
.
array
(
...
...
@@ -93,7 +90,7 @@ class TrainReader(Reader):
target_item_seq
[
i
],
target_cat_seq
[
i
]
])
return
res
def
batch_reader
(
self
,
reader
,
batch_size
,
group_size
):
def
batch_reader
():
bg
=
[]
...
...
@@ -115,7 +112,7 @@ class TrainReader(Reader):
yield
self
.
make_data
(
b
)
return
batch_reader
def
base_read
(
self
,
file_dir
):
res
=
[]
for
train_file
in
file_dir
:
...
...
@@ -126,10 +123,8 @@ class TrainReader(Reader):
cate
=
line
[
1
].
split
()
res
.
append
([
hist
,
cate
,
line
[
2
],
line
[
3
],
float
(
line
[
4
])])
return
res
def
generate_batch_from_trainfiles
(
self
,
files
):
data_set
=
self
.
base_read
(
files
)
random
.
shuffle
(
data_set
)
return
self
.
batch_reader
(
data_set
,
self
.
batch_size
,
self
.
batch_size
*
20
)
\ No newline at end of file
models/rank/wide_deep/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -23,32 +23,39 @@ from paddlerec.core.model import Model as ModelBase
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
def
wide_part
(
self
,
data
):
out
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
])),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
act
=
None
,
name
=
'wide'
)
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
])),
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
1e-4
)),
act
=
None
,
name
=
'wide'
)
return
out
def
fc
(
self
,
data
,
hidden_units
,
active
,
tag
):
output
=
fluid
.
layers
.
fc
(
input
=
data
,
size
=
hidden_units
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]))),
act
=
active
,
name
=
tag
)
size
=
hidden_units
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
data
.
shape
[
1
]))),
act
=
active
,
name
=
tag
)
return
output
def
deep_part
(
self
,
data
,
hidden1_units
,
hidden2_units
,
hidden3_units
):
l1
=
self
.
fc
(
data
,
hidden1_units
,
'relu'
,
'l1'
)
l2
=
self
.
fc
(
l1
,
hidden2_units
,
'relu'
,
'l2'
)
l3
=
self
.
fc
(
l2
,
hidden3_units
,
'relu'
,
'l3'
)
return
l3
def
train_net
(
self
):
wide_input
=
fluid
.
data
(
name
=
'wide_input'
,
shape
=
[
None
,
8
],
dtype
=
'float32'
)
deep_input
=
fluid
.
data
(
name
=
'deep_input'
,
shape
=
[
None
,
58
],
dtype
=
'float32'
)
...
...
@@ -62,31 +69,33 @@ class Model(ModelBase):
hidden3_units
=
envs
.
get_global_env
(
"hyper_parameters.hidden3_units"
,
25
,
self
.
_namespace
)
wide_output
=
self
.
wide_part
(
wide_input
)
deep_output
=
self
.
deep_part
(
deep_input
,
hidden1_units
,
hidden2_units
,
hidden3_units
)
wide_model
=
fluid
.
layers
.
fc
(
input
=
wide_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_wide'
)
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_wide'
)
deep_model
=
fluid
.
layers
.
fc
(
input
=
deep_output
,
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_deep'
)
size
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
1.0
)),
act
=
None
,
name
=
'w_deep'
)
prediction
=
fluid
.
layers
.
elementwise_add
(
wide_model
,
deep_model
)
pred
=
fluid
.
layers
.
sigmoid
(
fluid
.
layers
.
clip
(
prediction
,
min
=-
15.0
,
max
=
15.0
),
name
=
"prediction"
)
num_seqs
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
label
,
dtype
=
'int64'
),
total
=
num_seqs
)
auc_var
,
batch_auc
,
auc_states
=
fluid
.
layers
.
auc
(
input
=
pred
,
label
=
fluid
.
layers
.
cast
(
x
=
label
,
dtype
=
'int64'
))
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc
self
.
_metrics
[
"ACC"
]
=
acc
cost
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
prediction
,
label
=
label
)
cost
=
fluid
.
layers
.
sigmoid_cross_entropy_with_logits
(
x
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
self
.
_cost
=
avg_cost
...
...
@@ -96,4 +105,4 @@ class Model(ModelBase):
return
optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
deepfm_net
()
\ No newline at end of file
self
.
deepfm_net
()
models/rank/wide_deep/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -30,16 +30,17 @@ class TrainReader(Reader):
line
=
line
.
strip
().
split
(
','
)
features
=
list
(
map
(
float
,
line
))
wide_feat
=
features
[
0
:
8
]
deep_feat
=
features
[
8
:
58
+
8
]
deep_feat
=
features
[
8
:
58
+
8
]
label
=
features
[
-
1
]
return
wide_feat
,
deep_feat
,
[
label
]
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
"""
def
data_iter
():
wide_feat
,
deep_deat
,
label
=
self
.
_process_line
(
line
)
yield
[(
'wide_input'
,
wide_feat
),
(
'deep_input'
,
deep_deat
),
(
'label'
,
label
)]
return
data_iter
\ No newline at end of file
return
data_iter
models/rank/xdeepfm/criteo_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -22,10 +22,10 @@ except ImportError:
from
paddlerec.core.reader
import
Reader
class
TrainReader
(
Reader
):
class
TrainReader
(
Reader
):
def
init
(
self
):
pass
def
_process_line
(
self
,
line
):
features
=
line
.
strip
(
'
\n
'
).
split
(
'
\t
'
)
feat_idx
=
[]
...
...
@@ -35,11 +35,11 @@ class TrainReader(Reader):
feat_value
.
append
(
1.0
)
label
=
[
int
(
features
[
0
])]
return
feat_idx
,
feat_value
,
label
def
generate_sample
(
self
,
line
):
def
data_iter
():
feat_idx
,
feat_value
,
label
=
self
.
_process_line
(
line
)
yield
[(
'feat_idx'
,
feat_idx
),
(
'feat_value'
,
feat_value
),
(
'label'
,
label
)]
return
data_iter
\ No newline at end of file
return
data_iter
models/rank/xdeepfm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -26,13 +26,13 @@ class Model(ModelBase):
init_value_
=
0.1
initer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
init_value_
)
is_distributed
=
True
if
envs
.
get_trainer
()
==
"CtrTrainer"
else
False
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
_namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
# ------------------------- network input --------------------------
num_field
=
envs
.
get_global_env
(
"hyper_parameters.num_field"
,
None
,
self
.
_namespace
)
raw_feat_idx
=
fluid
.
data
(
name
=
'feat_idx'
,
shape
=
[
None
,
num_field
],
dtype
=
'int64'
)
raw_feat_value
=
fluid
.
data
(
name
=
'feat_value'
,
shape
=
[
None
,
num_field
],
dtype
=
'float32'
)
...
...
@@ -51,16 +51,16 @@ class Model(ModelBase):
feat_embeddings
,
[
-
1
,
num_field
,
sparse_feature_dim
])
# None * num_field * embedding_size
feat_embeddings
=
feat_embeddings
*
feat_value
# None * num_field * embedding_size
# ------------------------- set _data_var --------------------------
self
.
_data_var
.
append
(
raw_feat_idx
)
self
.
_data_var
.
append
(
raw_feat_value
)
self
.
_data_var
.
append
(
self
.
label
)
if
self
.
_platform
!=
"LINUX"
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
# -------------------- linear --------------------
weights_linear
=
fluid
.
embedding
(
...
...
@@ -78,7 +78,7 @@ class Model(ModelBase):
default_initializer
=
fluid
.
initializer
.
ConstantInitializer
(
value
=
0
))
y_linear
=
fluid
.
layers
.
reduce_sum
(
(
weights_linear
*
feat_value
),
1
)
+
b_linear
# -------------------- CIN --------------------
layer_sizes_cin
=
envs
.
get_global_env
(
"hyper_parameters.layer_sizes_cin"
,
None
,
self
.
_namespace
)
...
...
@@ -89,7 +89,7 @@ class Model(ModelBase):
X_0
=
fluid
.
layers
.
reshape
(
fluid
.
layers
.
transpose
(
Xs
[
0
],
[
0
,
2
,
1
]),
[
-
1
,
sparse_feature_dim
,
num_field
,
1
])
# None, embedding_size, num_field, 1
1
])
# None, embedding_size, num_field, 1
X_k
=
fluid
.
layers
.
reshape
(
fluid
.
layers
.
transpose
(
Xs
[
-
1
],
[
0
,
2
,
1
]),
[
-
1
,
sparse_feature_dim
,
1
,
last_s
])
# None, embedding_size, 1, last_s
...
...
@@ -135,7 +135,7 @@ class Model(ModelBase):
layer_sizes_dnn
=
envs
.
get_global_env
(
"hyper_parameters.layer_sizes_dnn"
,
None
,
self
.
_namespace
)
act
=
envs
.
get_global_env
(
"hyper_parameters.act"
,
None
,
self
.
_namespace
)
y_dnn
=
fluid
.
layers
.
reshape
(
feat_embeddings
,
[
-
1
,
num_field
*
sparse_feature_dim
])
[
-
1
,
num_field
*
sparse_feature_dim
])
for
s
in
layer_sizes_dnn
:
y_dnn
=
fluid
.
layers
.
fc
(
input
=
y_dnn
,
size
=
s
,
...
...
@@ -151,7 +151,7 @@ class Model(ModelBase):
# ------------------- xDeepFM ------------------
self
.
predict
=
fluid
.
layers
.
sigmoid
(
y_linear
+
y_cin
+
y_dnn
)
def
train_net
(
self
):
self
.
xdeepfm_net
()
...
...
@@ -163,15 +163,15 @@ class Model(ModelBase):
predict_2d
=
fluid
.
layers
.
concat
([
1
-
self
.
predict
,
self
.
predict
],
1
)
label_int
=
fluid
.
layers
.
cast
(
self
.
label
,
'int64'
)
auc_var
,
batch_auc_var
,
_
=
fluid
.
layers
.
auc
(
input
=
predict_2d
,
label
=
label_int
,
slide_steps
=
0
)
label
=
label_int
,
slide_steps
=
0
)
self
.
_metrics
[
"AUC"
]
=
auc_var
self
.
_metrics
[
"BATCH_AUC"
]
=
batch_auc_var
def
optimizer
(
self
):
learning_rate
=
envs
.
get_global_env
(
"hyper_parameters.learning_rate"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
,
lazy_mode
=
True
)
return
optimizer
def
infer_net
(
self
,
parameter_list
):
self
.
xdeepfm_net
()
\ No newline at end of file
self
.
xdeepfm_net
()
models/recall/gnn/evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -24,17 +24,17 @@ from paddlerec.core.utils import envs
class
EvaluateReader
(
Reader
):
def
init
(
self
):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader"
)
self
.
input
=
[]
self
.
length
=
None
def
base_read
(
self
,
files
):
res
=
[]
for
f
in
files
:
with
open
(
f
,
"r"
)
as
fin
:
with
open
(
f
,
"r"
)
as
fin
:
for
line
in
fin
:
line
=
line
.
strip
().
split
(
'
\t
'
)
res
.
append
(
tuple
([
map
(
int
,
line
[
0
].
split
(
','
)),
int
(
line
[
1
])]))
line
=
line
.
strip
().
split
(
'
\t
'
)
res
.
append
(
tuple
([
map
(
int
,
line
[
0
].
split
(
','
)),
int
(
line
[
1
])]))
return
res
def
make_data
(
self
,
cur_batch
,
batch_size
):
...
...
@@ -122,10 +122,11 @@ class EvaluateReader(Reader):
else
:
# Due to fixed batch_size, discard the remaining ins
return
#cur_batch = remain_data[i:]
#yield self.make_data(cur_batch, group_remain % batch_size)
# cur_batch = remain_data[i:]
# yield self.make_data(cur_batch, group_remain % batch_size)
return
_reader
def
generate_batch_from_trainfiles
(
self
,
files
):
self
.
input
=
self
.
base_read
(
files
)
self
.
length
=
len
(
self
.
input
)
...
...
@@ -134,4 +135,5 @@ class EvaluateReader(Reader):
def
generate_sample
(
self
,
line
):
def
data_iter
():
yield
[]
return
data_iter
models/recall/gnn/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -26,19 +26,19 @@ class Model(ModelBase):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
self
.
init_config
()
def
init_config
(
self
):
self
.
_fetch_interval
=
1
self
.
items_num
,
self
.
ins_num
=
self
.
config_read
(
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
None
,
self
.
_namespace
))
self
.
items_num
,
self
.
ins_num
=
self
.
config_read
(
envs
.
get_global_env
(
"hyper_parameters.config_path"
,
None
,
self
.
_namespace
))
self
.
train_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
evaluate_batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"evaluate.reader"
)
self
.
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
_namespace
)
self
.
step
=
envs
.
get_global_env
(
"hyper_parameters.gnn_propogation_steps"
,
None
,
self
.
_namespace
)
def
config_read
(
self
,
config_path
=
None
):
if
config_path
is
None
:
raise
ValueError
(
"please set train.model.hyper_parameters.config_path at first"
)
if
config_path
is
None
:
raise
ValueError
(
"please set train.model.hyper_parameters.config_path at first"
)
with
open
(
config_path
,
"r"
)
as
fin
:
item_nums
=
int
(
fin
.
readline
().
strip
())
ins_nums
=
int
(
fin
.
readline
().
strip
())
...
...
@@ -48,49 +48,49 @@ class Model(ModelBase):
self
.
items
=
fluid
.
data
(
name
=
"items"
,
shape
=
[
bs
,
-
1
],
dtype
=
"int64"
)
#
[batch_size, uniq_max]
dtype
=
"int64"
)
#
[batch_size, uniq_max]
self
.
seq_index
=
fluid
.
data
(
name
=
"seq_index"
,
shape
=
[
bs
,
-
1
,
2
],
dtype
=
"int32"
)
#
[batch_size, seq_max, 2]
dtype
=
"int32"
)
#
[batch_size, seq_max, 2]
self
.
last_index
=
fluid
.
data
(
name
=
"last_index"
,
shape
=
[
bs
,
2
],
dtype
=
"int32"
)
#
[batch_size, 2]
dtype
=
"int32"
)
#
[batch_size, 2]
self
.
adj_in
=
fluid
.
data
(
name
=
"adj_in"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
self
.
adj_out
=
fluid
.
data
(
name
=
"adj_out"
,
shape
=
[
bs
,
-
1
,
-
1
],
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
dtype
=
"float32"
)
#
[batch_size, seq_max, seq_max]
self
.
mask
=
fluid
.
data
(
name
=
"mask"
,
shape
=
[
bs
,
-
1
,
1
],
dtype
=
"float32"
)
#
[batch_size, seq_max, 1]
dtype
=
"float32"
)
#
[batch_size, seq_max, 1]
self
.
label
=
fluid
.
data
(
name
=
"label"
,
shape
=
[
bs
,
1
],
dtype
=
"int64"
)
#[batch_size, 1]
dtype
=
"int64"
)
# [batch_size, 1]
res
=
[
self
.
items
,
self
.
seq_index
,
self
.
last_index
,
self
.
adj_in
,
self
.
adj_out
,
self
.
mask
,
self
.
label
]
return
res
def
train_input
(
self
):
res
=
self
.
input
(
self
.
train_batch_size
)
self
.
_data_var
=
res
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
use_dataloader
=
envs
.
get_global_env
(
"hyper_parameters.use_DataLoader"
,
False
,
self
.
_namespace
)
if
self
.
_platform
!=
"LINUX"
or
use_dataloader
:
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
capacity
=
256
,
use_double_buffer
=
False
,
iterable
=
False
)
def
net
(
self
,
items_num
,
hidden_size
,
step
,
bs
):
stdv
=
1.0
/
math
.
sqrt
(
hidden_size
)
stdv
=
1.0
/
math
.
sqrt
(
hidden_size
)
def
embedding_layer
(
input
,
table_name
,
emb_dim
,
initializer_instance
=
None
):
def
embedding_layer
(
input
,
table_name
,
emb_dim
,
initializer_instance
=
None
):
emb
=
fluid
.
embedding
(
input
=
input
,
size
=
[
items_num
,
emb_dim
],
...
...
@@ -98,10 +98,10 @@ class Model(ModelBase):
name
=
table_name
,
initializer
=
initializer_instance
),
)
return
emb
sparse_initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)
items_emb
=
embedding_layer
(
self
.
items
,
"emb"
,
hidden_size
,
sparse_initializer
)
return
emb
sparse_initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)
items_emb
=
embedding_layer
(
self
.
items
,
"emb"
,
hidden_size
,
sparse_initializer
)
pre_state
=
items_emb
for
i
in
range
(
step
):
pre_state
=
layers
.
reshape
(
x
=
pre_state
,
shape
=
[
bs
,
-
1
,
hidden_size
])
...
...
@@ -114,7 +114,7 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, uniq_max, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, uniq_max, h]
state_out
=
layers
.
fc
(
input
=
pre_state
,
name
=
"state_out"
,
...
...
@@ -124,13 +124,13 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, uniq_max, h]
state_adj_in
=
layers
.
matmul
(
self
.
adj_in
,
state_in
)
#[batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
self
.
adj_out
,
state_out
)
#
[batch_size, uniq_max, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, uniq_max, h]
state_adj_in
=
layers
.
matmul
(
self
.
adj_in
,
state_in
)
#
[batch_size, uniq_max, h]
state_adj_out
=
layers
.
matmul
(
self
.
adj_out
,
state_out
)
#
[batch_size, uniq_max, h]
gru_input
=
layers
.
concat
([
state_adj_in
,
state_adj_out
],
axis
=
2
)
gru_input
=
layers
.
reshape
(
x
=
gru_input
,
shape
=
[
-
1
,
hidden_size
*
2
])
gru_fc
=
layers
.
fc
(
input
=
gru_input
,
...
...
@@ -141,11 +141,11 @@ class Model(ModelBase):
input
=
gru_fc
,
hidden
=
layers
.
reshape
(
x
=
pre_state
,
shape
=
[
-
1
,
hidden_size
]),
size
=
3
*
hidden_size
)
final_state
=
layers
.
reshape
(
pre_state
,
shape
=
[
bs
,
-
1
,
hidden_size
])
seq
=
layers
.
gather_nd
(
final_state
,
self
.
seq_index
)
last
=
layers
.
gather_nd
(
final_state
,
self
.
last_index
)
seq_fc
=
layers
.
fc
(
input
=
seq
,
name
=
"seq_fc"
,
...
...
@@ -155,7 +155,7 @@ class Model(ModelBase):
num_flatten_dims
=
2
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, seq_max, h]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, seq_max, h]
last_fc
=
layers
.
fc
(
input
=
last
,
name
=
"last_fc"
,
...
...
@@ -165,22 +165,22 @@ class Model(ModelBase):
num_flatten_dims
=
1
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#
[bathc_size, h]
low
=-
stdv
,
high
=
stdv
)))
#
[bathc_size, h]
seq_fc_t
=
layers
.
transpose
(
seq_fc
,
perm
=
[
1
,
0
,
2
])
#[seq_max, batch_size, h]
seq_fc
,
perm
=
[
1
,
0
,
2
])
#
[seq_max, batch_size, h]
add
=
layers
.
elementwise_add
(
seq_fc_t
,
last_fc
)
#[seq_max, batch_size, h]
seq_fc_t
,
last_fc
)
#
[seq_max, batch_size, h]
b
=
layers
.
create_parameter
(
shape
=
[
hidden_size
],
dtype
=
'float32'
,
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
#[h]
add
=
layers
.
elementwise_add
(
add
,
b
)
#[seq_max, batch_size, h]
add_sigmoid
=
layers
.
sigmoid
(
add
)
#[seq_max, batch_size, h]
default_initializer
=
fluid
.
initializer
.
Constant
(
value
=
0.0
))
#
[h]
add
=
layers
.
elementwise_add
(
add
,
b
)
#
[seq_max, batch_size, h]
add_sigmoid
=
layers
.
sigmoid
(
add
)
# [seq_max, batch_size, h]
add_sigmoid
=
layers
.
transpose
(
add_sigmoid
,
perm
=
[
1
,
0
,
2
])
#[batch_size, seq_max, h]
add_sigmoid
,
perm
=
[
1
,
0
,
2
])
#
[batch_size, seq_max, h]
weight
=
layers
.
fc
(
input
=
add_sigmoid
,
name
=
"weight_fc"
,
...
...
@@ -190,13 +190,13 @@ class Model(ModelBase):
bias_attr
=
False
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, seq_max, 1]
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, seq_max, 1]
weight
*=
self
.
mask
weight_mask
=
layers
.
elementwise_mul
(
seq
,
weight
,
axis
=
0
)
#
[batch_size, seq_max, h]
global_attention
=
layers
.
reduce_sum
(
weight_mask
,
dim
=
1
)
#
[batch_size, h]
weight_mask
=
layers
.
elementwise_mul
(
seq
,
weight
,
axis
=
0
)
#
[batch_size, seq_max, h]
global_attention
=
layers
.
reduce_sum
(
weight_mask
,
dim
=
1
)
#
[batch_size, h]
final_attention
=
layers
.
concat
(
[
global_attention
,
last
],
axis
=
1
)
#[batch_size, 2*h]
[
global_attention
,
last
],
axis
=
1
)
#
[batch_size, 2*h]
final_attention_fc
=
layers
.
fc
(
input
=
final_attention
,
name
=
"final_attention_fc"
,
...
...
@@ -204,14 +204,14 @@ class Model(ModelBase):
bias_attr
=
False
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)))
#[batch_size, h]
# all_vocab = layers.create_global_var(
# shape=[items_num - 1],
# value=0,
# dtype="int64",
# persistable=True,
# name="all_vocab")
low
=-
stdv
,
high
=
stdv
)))
#
[batch_size, h]
# all_vocab = layers.create_global_var(
# shape=[items_num - 1],
# value=0,
# dtype="int64",
# persistable=True,
# name="all_vocab")
all_vocab
=
np
.
arange
(
1
,
items_num
).
reshape
((
-
1
)).
astype
(
'int32'
)
all_vocab
=
fluid
.
layers
.
cast
(
x
=
fluid
.
layers
.
assign
(
all_vocab
),
dtype
=
'int64'
)
...
...
@@ -221,13 +221,13 @@ class Model(ModelBase):
name
=
"emb"
,
initializer
=
fluid
.
initializer
.
Uniform
(
low
=-
stdv
,
high
=
stdv
)),
size
=
[
items_num
,
hidden_size
])
#[all_vocab, h]
size
=
[
items_num
,
hidden_size
])
#
[all_vocab, h]
logits
=
layers
.
matmul
(
x
=
final_attention_fc
,
y
=
all_emb
,
transpose_y
=
True
)
#[batch_size, all_vocab]
transpose_y
=
True
)
#
[batch_size, all_vocab]
softmax
=
layers
.
softmax_with_cross_entropy
(
logits
=
logits
,
label
=
self
.
label
)
#[batch_size, 1]
logits
=
logits
,
label
=
self
.
label
)
#
[batch_size, 1]
self
.
loss
=
layers
.
reduce_mean
(
softmax
)
# [1]
self
.
acc
=
layers
.
accuracy
(
input
=
logits
,
label
=
self
.
label
,
k
=
20
)
...
...
@@ -250,7 +250,7 @@ class Model(ModelBase):
decay_steps
=
envs
.
get_global_env
(
"hyper_parameters.decay_steps"
,
None
,
self
.
_namespace
)
decay_rate
=
envs
.
get_global_env
(
"hyper_parameters.decay_rate"
,
None
,
self
.
_namespace
)
l2
=
envs
.
get_global_env
(
"hyper_parameters.l2"
,
None
,
self
.
_namespace
)
optimizer
=
fluid
.
optimizer
.
Adam
(
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
decay_steps
*
step_per_epoch
,
...
...
@@ -258,18 +258,18 @@ class Model(ModelBase):
regularization
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
l2
))
return
optimizer
return
optimizer
def
infer_input
(
self
):
self
.
_reader_namespace
=
"evaluate.reader"
res
=
self
.
input
(
self
.
evaluate_batch_size
)
self
.
_infer_data_var
=
res
self
.
_infer_data_var
=
res
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
def
infer_net
(
self
):
self
.
infer_input
()
self
.
net
(
self
.
items_num
,
self
.
hidden_size
,
self
.
step
,
self
.
evaluate_batch_size
)
self
.
infer_input
()
self
.
net
(
self
.
items_num
,
self
.
hidden_size
,
self
.
step
,
self
.
evaluate_batch_size
)
self
.
_infer_results
[
'acc'
]
=
self
.
acc
self
.
_infer_results
[
'loss'
]
=
self
.
loss
self
.
_infer_results
[
'loss'
]
=
self
.
loss
models/recall/gnn/reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -24,17 +24,17 @@ from paddlerec.core.utils import envs
class
TrainReader
(
Reader
):
def
init
(
self
):
self
.
batch_size
=
envs
.
get_global_env
(
"batch_size"
,
None
,
"train.reader"
)
self
.
input
=
[]
self
.
length
=
None
def
base_read
(
self
,
files
):
res
=
[]
for
f
in
files
:
with
open
(
f
,
"r"
)
as
fin
:
with
open
(
f
,
"r"
)
as
fin
:
for
line
in
fin
:
line
=
line
.
strip
().
split
(
'
\t
'
)
res
.
append
(
tuple
([
map
(
int
,
line
[
0
].
split
(
','
)),
int
(
line
[
1
])]))
line
=
line
.
strip
().
split
(
'
\t
'
)
res
.
append
(
tuple
([
map
(
int
,
line
[
0
].
split
(
','
)),
int
(
line
[
1
])]))
return
res
def
make_data
(
self
,
cur_batch
,
batch_size
):
...
...
@@ -122,10 +122,11 @@ class TrainReader(Reader):
else
:
# Due to fixed batch_size, discard the remaining ins
return
#cur_batch = remain_data[i:]
#yield self.make_data(cur_batch, group_remain % batch_size)
# cur_batch = remain_data[i:]
# yield self.make_data(cur_batch, group_remain % batch_size)
return
_reader
def
generate_batch_from_trainfiles
(
self
,
files
):
self
.
input
=
self
.
base_read
(
files
)
self
.
length
=
len
(
self
.
input
)
...
...
@@ -134,4 +135,5 @@ class TrainReader(Reader):
def
generate_sample
(
self
,
line
):
def
data_iter
():
yield
[]
return
data_iter
models/recall/gru4rec/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -86,10 +86,8 @@ class Model(ModelBase):
self
.
_metrics
[
"cost"
]
=
avg_cost
self
.
_metrics
[
"acc"
]
=
acc
def
train_net
(
self
):
self
.
all_vocab_network
()
def
infer_net
(
self
):
self
.
all_vocab_network
(
is_infer
=
True
)
models/recall/ssr/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -51,6 +51,7 @@ class GrnnEncoder(object):
bias_attr
=
self
.
param_name
+
".bias"
)
return
fluid
.
layers
.
sequence_pool
(
input
=
gru_h
,
pool_type
=
'max'
)
class
PairwiseHingeLoss
(
object
):
def
__init__
(
self
,
margin
=
0.8
):
self
.
margin
=
margin
...
...
@@ -67,6 +68,7 @@ class PairwiseHingeLoss(object):
loss_part2
)
return
loss_part3
class
Model
(
ModelBase
):
def
__init__
(
self
,
config
):
ModelBase
.
__init__
(
self
,
config
)
...
...
@@ -77,7 +79,6 @@ class Model(ModelBase):
return
correct
def
train
(
self
):
vocab_size
=
envs
.
get_global_env
(
"hyper_parameters.vocab_size"
,
None
,
self
.
_namespace
)
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.emb_dim"
,
None
,
self
.
_namespace
)
hidden_size
=
envs
.
get_global_env
(
"hyper_parameters.hidden_size"
,
None
,
self
.
_namespace
)
...
...
@@ -121,16 +122,14 @@ class Model(ModelBase):
hinge_loss
=
self
.
pairwise_hinge_loss
.
forward
(
cos_pos
,
cos_neg
)
avg_cost
=
fluid
.
layers
.
mean
(
hinge_loss
)
correct
=
self
.
get_correct
(
cos_neg
,
cos_pos
)
self
.
_cost
=
avg_cost
self
.
_metrics
[
"correct"
]
=
correct
self
.
_metrics
[
"hinge_loss"
]
=
hinge_loss
def
train_net
(
self
):
self
.
train
()
def
infer
(
self
):
vocab_size
=
envs
.
get_global_env
(
"hyper_parameters.vocab_size"
,
None
,
self
.
_namespace
)
emb_dim
=
envs
.
get_global_env
(
"hyper_parameters.emb_dim"
,
None
,
self
.
_namespace
)
...
...
@@ -143,7 +142,7 @@ class Model(ModelBase):
pos_label
=
fluid
.
data
(
name
=
"pos_label"
,
shape
=
[
None
,
1
],
dtype
=
"int64"
)
self
.
_infer_data_var
=
[
user_data
,
all_item_data
,
pos_label
]
self
.
_infer_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
feed_list
=
self
.
_infer_data_var
,
capacity
=
64
,
use_double_buffer
=
False
,
iterable
=
False
)
user_emb
=
fluid
.
embedding
(
input
=
user_data
,
size
=
[
vocab_size
,
emb_dim
],
param_attr
=
"emb.item"
)
...
...
@@ -170,6 +169,5 @@ class Model(ModelBase):
self
.
_infer_results
[
'recall20'
]
=
acc
def
infer_net
(
self
):
self
.
infer
()
models/recall/ssr/ssr_infer_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -20,12 +20,10 @@ from paddlerec.core.reader import Reader
from
paddlerec.core.utils
import
envs
class
EvaluateReader
(
Reader
):
def
init
(
self
):
self
.
vocab_size
=
envs
.
get_global_env
(
"vocab_size"
,
10
,
"train.model.hyper_parameters"
)
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
...
...
@@ -41,6 +39,6 @@ class EvaluateReader(Reader):
src
=
conv_ids
[:
boundary
]
pos_tgt
=
[
conv_ids
[
boundary
]]
feature_name
=
[
"user"
,
"all_item"
,
"p_item"
]
yield
zip
(
feature_name
,
[
src
]
+
[
np
.
arange
(
self
.
vocab_size
).
astype
(
"int64"
).
tolist
()]
+
[
pos_tgt
])
yield
zip
(
feature_name
,
[
src
]
+
[
np
.
arange
(
self
.
vocab_size
).
astype
(
"int64"
).
tolist
()]
+
[
pos_tgt
])
return
reader
models/recall/ssr/ssr_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -19,7 +19,6 @@ import random
from
paddlerec.core.reader
import
Reader
class
TrainReader
(
Reader
):
def
init
(
self
):
pass
...
...
@@ -27,7 +26,6 @@ class TrainReader(Reader):
def
sample_neg_from_seq
(
self
,
seq
):
return
seq
[
random
.
randint
(
0
,
len
(
seq
)
-
1
)]
def
generate_sample
(
self
,
line
):
"""
Read the data line by line and process it as a dictionary
...
...
models/recall/word2vec/preprocess.py
浏览文件 @
7a3ec4e6
...
...
@@ -20,11 +20,8 @@ import random
import
re
import
six
import
argparse
prog
=
re
.
compile
(
"[^a-z ]"
,
flags
=
0
)
...
...
@@ -78,7 +75,7 @@ def parse_args():
def
text_strip
(
text
):
#English Preprocess Rule
#
English Preprocess Rule
return
prog
.
sub
(
""
,
text
.
lower
())
...
...
@@ -120,7 +117,7 @@ def filter_corpus(args):
word_all_count
=
0
id_counts
=
[]
word_id
=
0
#read dict
#
read dict
with
io
.
open
(
args
.
dict_path
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
for
line
in
f
:
word
,
count
=
line
.
split
()[
0
],
int
(
line
.
split
()[
1
])
...
...
@@ -130,13 +127,13 @@ def filter_corpus(args):
id_counts
.
append
(
count
)
word_all_count
+=
count
#write word2id file
#
write word2id file
print
(
"write word2id file to : "
+
args
.
dict_path
+
"_word_to_id_"
)
with
io
.
open
(
args
.
dict_path
+
"_word_to_id_"
,
'w+'
,
encoding
=
'utf-8'
)
as
fid
:
for
k
,
v
in
word_to_id_
.
items
():
fid
.
write
(
k
+
" "
+
str
(
v
)
+
'
\n
'
)
#filter corpus and convert id
#
filter corpus and convert id
if
not
os
.
path
.
exists
(
args
.
output_corpus_dir
):
os
.
makedirs
(
args
.
output_corpus_dir
)
for
file
in
os
.
listdir
(
args
.
input_corpus_dir
):
...
...
@@ -157,9 +154,9 @@ def filter_corpus(args):
count_w
=
id_counts
[
idx
]
corpus_size
=
word_all_count
keep_prob
=
(
math
.
sqrt
(
count_w
/
(
args
.
downsample
*
corpus_size
))
+
1
)
*
(
args
.
downsample
*
corpus_size
)
/
count_w
math
.
sqrt
(
count_w
/
(
args
.
downsample
*
corpus_size
))
+
1
)
*
(
args
.
downsample
*
corpus_size
)
/
count_w
r_value
=
random
.
random
()
if
r_value
>
keep_prob
:
continue
...
...
@@ -205,7 +202,7 @@ def build_dict(args):
for
item
in
item_to_remove
:
unk_sum
+=
word_count
[
item
]
del
word_count
[
item
]
#sort by count
#
sort by count
word_count
[
native_to_unicode
(
'<UNK>'
)]
=
unk_sum
word_count
=
sorted
(
word_count
.
items
(),
key
=
lambda
word_count
:
-
word_count
[
1
])
...
...
@@ -227,17 +224,18 @@ def data_split(args):
for
file_
in
files
:
with
open
(
os
.
path
.
join
(
raw_data_dir
,
file_
),
'r'
)
as
f
:
contents
.
extend
(
f
.
readlines
())
num
=
int
(
args
.
file_nums
)
lines_per_file
=
len
(
contents
)
/
num
print
(
"contents: "
,
str
(
len
(
contents
)))
print
(
"lines_per_file: "
,
str
(
lines_per_file
))
for
i
in
range
(
1
,
num
+
1
):
for
i
in
range
(
1
,
num
+
1
):
with
open
(
os
.
path
.
join
(
new_data_dir
,
"part_"
+
str
(
i
)),
'w'
)
as
fout
:
data
=
contents
[(
i
-
1
)
*
lines_per_file
:
min
(
i
*
lines_per_file
,
len
(
contents
))]
data
=
contents
[(
i
-
1
)
*
lines_per_file
:
min
(
i
*
lines_per_file
,
len
(
contents
))]
for
line
in
data
:
fout
.
write
(
line
)
fout
.
write
(
line
)
if
__name__
==
"__main__"
:
args
=
parse_args
()
...
...
models/recall/word2vec/w2v_evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -22,7 +22,7 @@ from paddlerec.core.utils import envs
class
EvaluateReader
(
Reader
):
def
init
(
self
):
dict_path
=
envs
.
get_global_env
(
"word_id_dict_path"
,
None
,
"evaluate.reader"
)
dict_path
=
envs
.
get_global_env
(
"word_id_dict_path"
,
None
,
"evaluate.reader"
)
self
.
word_to_id
=
dict
()
self
.
id_to_word
=
dict
()
with
io
.
open
(
dict_path
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
...
...
@@ -48,19 +48,16 @@ class EvaluateReader(Reader):
if
isinstance
(
s
,
str
):
return
True
return
False
def
_to_unicode
(
self
,
s
,
ignore_errors
=
False
):
if
self
.
_is_unicode
(
s
):
return
s
error_mode
=
"ignore"
if
ignore_errors
else
"strict"
return
s
.
decode
(
"utf-8"
,
errors
=
error_mode
)
def
strip_lines
(
self
,
line
,
vocab
):
return
self
.
_replace_oov
(
vocab
,
self
.
native_to_unicode
(
line
))
def
_replace_oov
(
self
,
original_vocab
,
line
):
"""Replace out-of-vocab words with "<UNK>".
This maintains compatibility with published results.
...
...
@@ -78,5 +75,7 @@ class EvaluateReader(Reader):
def
reader
():
features
=
self
.
strip_lines
(
line
.
lower
(),
self
.
word_to_id
)
features
=
features
.
split
()
yield
[(
'analogy_a'
,
[
self
.
word_to_id
[
features
[
0
]]]),
(
'analogy_b'
,
[
self
.
word_to_id
[
features
[
1
]]]),
(
'analogy_c'
,
[
self
.
word_to_id
[
features
[
2
]]]),
(
'analogy_d'
,
[
self
.
word_to_id
[
features
[
3
]]])]
yield
[(
'analogy_a'
,
[
self
.
word_to_id
[
features
[
0
]]]),
(
'analogy_b'
,
[
self
.
word_to_id
[
features
[
1
]]]),
(
'analogy_c'
,
[
self
.
word_to_id
[
features
[
2
]]]),
(
'analogy_d'
,
[
self
.
word_to_id
[
features
[
3
]]])]
return
reader
models/recall/word2vec/w2v_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -40,7 +40,7 @@ class NumpyRandomInt(object):
class
TrainReader
(
Reader
):
def
init
(
self
):
dict_path
=
envs
.
get_global_env
(
"word_count_dict_path"
,
None
,
"train.reader"
)
dict_path
=
envs
.
get_global_env
(
"word_count_dict_path"
,
None
,
"train.reader"
)
self
.
window_size
=
envs
.
get_global_env
(
"hyper_parameters.window_size"
,
None
,
"train.model"
)
self
.
neg_num
=
envs
.
get_global_env
(
"hyper_parameters.neg_num"
,
None
,
"train.model"
)
self
.
with_shuffle_batch
=
envs
.
get_global_env
(
"hyper_parameters.with_shuffle_batch"
,
None
,
"train.model"
)
...
...
@@ -75,7 +75,7 @@ class TrainReader(Reader):
start_point
=
0
end_point
=
idx
+
target_window
targets
=
words
[
start_point
:
idx
]
+
words
[
idx
+
1
:
end_point
+
1
]
return
targets
return
targets
def
generate_sample
(
self
,
line
):
def
reader
():
...
...
@@ -87,7 +87,7 @@ class TrainReader(Reader):
output
=
[(
'input_word'
,
[
int
(
target_id
)]),
(
'true_label'
,
[
int
(
context_id
)])]
if
not
self
.
with_shuffle_batch
:
neg_array
=
self
.
cs
.
searchsorted
(
np
.
random
.
sample
(
self
.
neg_num
))
output
+=
[(
'neg_label'
,
[
int
(
str
(
i
))
for
i
in
neg_array
])]
output
+=
[(
'neg_label'
,
[
int
(
str
(
i
))
for
i
in
neg_array
])]
yield
output
return
reader
return
reader
models/treebased/tdm/model.py
浏览文件 @
7a3ec4e6
...
...
@@ -134,7 +134,7 @@ class Model(ModelBase):
sample_nodes_emb
=
[
fluid
.
layers
.
reshape
(
sample_nodes_emb
[
i
],
[
-
1
,
self
.
neg_sampling_list
[
i
]
+
self
.
output_positive
,
self
.
node_emb_size
]
self
.
output_positive
,
self
.
node_emb_size
]
)
for
i
in
range
(
self
.
max_layers
)
]
...
...
@@ -229,7 +229,7 @@ class Model(ModelBase):
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
i
)),
)
for
i
in
range
(
self
.
max_layers
)
]
...
...
@@ -268,8 +268,8 @@ class Model(ModelBase):
num_flatten_dims
=
2
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
i
))
name
=
"cls.concat_fc.weight."
+
str
(
i
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
i
))
)
for
i
in
range
(
self
.
max_layers
)
]
...
...
@@ -348,7 +348,7 @@ class Model(ModelBase):
current_layer_node_num
=
self
.
first_layer_node
.
shape
[
1
]
else
:
current_layer_node_num
=
current_layer_node
.
shape
[
1
]
*
\
current_layer_node
.
shape
[
2
]
current_layer_node
.
shape
[
2
]
current_layer_node
=
fluid
.
layers
.
reshape
(
current_layer_node
,
[
-
1
,
current_layer_node_num
])
...
...
@@ -458,7 +458,7 @@ class Model(ModelBase):
param_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"trans.layer_fc.bias."
+
str
(
layer_idx
)),
name
=
"trans.layer_fc.bias."
+
str
(
layer_idx
)),
)
return
input_layer_fc_out
...
...
@@ -479,6 +479,6 @@ class Model(ModelBase):
num_flatten_dims
=
2
,
act
=
self
.
act
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
layer_idx
)))
name
=
"cls.concat_fc.weight."
+
str
(
layer_idx
)),
bias_attr
=
fluid
.
ParamAttr
(
name
=
"cls.concat_fc.bias."
+
str
(
layer_idx
)))
return
hidden_states_fc
models/treebased/tdm/tdm_evaluate_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -28,6 +28,7 @@ class EvaluateReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
...
...
models/treebased/tdm/tdm_reader.py
浏览文件 @
7a3ec4e6
...
...
@@ -28,6 +28,7 @@ class TrainReader(Reader):
"""
Read the data line by line and process it as a dictionary
"""
def
reader
():
"""
This function needs to be implemented by the user, based on data format
...
...
setup.py
浏览文件 @
7a3ec4e6
...
...
@@ -36,7 +36,7 @@ about["__author__"] = "paddle-dev"
about
[
"__author_email__"
]
=
"paddle-dev@baidu.com"
about
[
"__url__"
]
=
"https://github.com/PaddlePaddle/PaddleRec"
readme
=
"
...
"
readme
=
""
def
run_cmd
(
command
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录