model.py 7.4 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf

19
from paddlerec.core.utils import envs
C
Chengmo 已提交
20
from paddlerec.core.model import ModelBase
M
malin10 已提交
21

T
for mat  
tangwei 已提交
22

M
malin10 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')


class CNNEncoder(object):
    """ cnn-encoder"""

    def __init__(self,
                 param_name="cnn",
                 win_size=3,
                 ksize=128,
                 act='tanh',
                 pool_type='max'):
        self.param_name = param_name
        self.win_size = win_size
        self.ksize = ksize
        self.act = act
        self.pool_type = pool_type

    def forward(self, emb):
        return fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=self.ksize,
            filter_size=self.win_size,
            act=self.act,
            pool_type=self.pool_type,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = fluid.layers.fc(input=emb,
                              size=self.hidden_size * 3,
                              param_attr=self.param_name + "_fc.w",
                              bias_attr=False)

        gru_h = fluid.layers.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return fluid.layers.sequence_pool(input=gru_h, pool_type='max')


class SimpleEncoderFactory(object):
    def __init__(self):
        pass

    ''' create an encoder through create function '''

    def create(self, enc_type, enc_hid_size):
        if enc_type == "bow":
            bow_encode = BowEncoder()
            return bow_encode
        elif enc_type == "cnn":
            cnn_encode = CNNEncoder(ksize=enc_hid_size)
            return cnn_encode
        elif enc_type == "gru":
            rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
            return rnn_encode

T
for mat  
tangwei 已提交
98

M
malin10 已提交
99 100 101 102
class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

M
malin10 已提交
103
    def _init_hyper_parameters(self):
M
malin10 已提交
104 105 106 107 108 109 110 111 112 113 114
        self.query_encoder = envs.get_global_env(
            "hyper_parameters.query_encoder")
        self.title_encoder = envs.get_global_env(
            "hyper_parameters.title_encoder")
        self.query_encode_dim = envs.get_global_env(
            "hyper_parameters.query_encode_dim")
        self.title_encode_dim = envs.get_global_env(
            "hyper_parameters.title_encode_dim")

        self.emb_size = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim")
M
malin10 已提交
115
        self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim")
T
for mat  
tangwei 已提交
116
        self.emb_shape = [self.emb_size, self.emb_dim]
M
malin10 已提交
117

M
malin10 已提交
118 119
        self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size")
        self.margin = envs.get_global_env("hyper_parameters.margin")
M
malin10 已提交
120

M
malin10 已提交
121 122 123 124 125 126
    def net(self, input, is_infer=False):
        factory = SimpleEncoderFactory()
        self.q_slots = self._sparse_data_var[0:1]
        self.query_encoders = [
            factory.create(self.query_encoder, self.query_encode_dim)
            for _ in self.q_slots
M
malin10 已提交
127
        ]
T
for mat  
tangwei 已提交
128
        q_embs = [
M
malin10 已提交
129 130 131 132
            fluid.embedding(
                input=query, size=self.emb_shape, param_attr="emb")
            for query in self.q_slots
        ]
M
malin10 已提交
133
        # encode each embedding field with encoder
M
malin10 已提交
134 135 136
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
M
malin10 已提交
137 138
        # concat multi view for query, pos_title, neg_title
        q_concat = fluid.layers.concat(q_encodes)
M
malin10 已提交
139
        # projection of hidden layer
M
malin10 已提交
140
        q_hid = fluid.layers.fc(q_concat,
M
malin10 已提交
141 142 143 144 145 146 147 148
                                size=self.hidden_size,
                                param_attr='q_fc.w',
                                bias_attr='q_fc.b')

        self.pt_slots = self._sparse_data_var[1:2]
        self.title_encoders = [
            factory.create(self.title_encoder, self.title_encode_dim)
        ]
M
malin10 已提交
149
        pt_embs = [
M
malin10 已提交
150 151 152 153
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.pt_slots
        ]
M
malin10 已提交
154
        pt_encodes = [
M
malin10 已提交
155 156 157
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(pt_embs)
        ]
M
malin10 已提交
158 159
        pt_concat = fluid.layers.concat(pt_encodes)
        pt_hid = fluid.layers.fc(pt_concat,
M
malin10 已提交
160 161 162
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')
M
malin10 已提交
163 164
        # cosine of hidden layers
        cos_pos = fluid.layers.cos_sim(q_hid, pt_hid)
M
malin10 已提交
165 166

        if is_infer:
M
malin10 已提交
167 168
            self._infer_results['query_pt_sim'] = cos_pos
            return
M
malin10 已提交
169 170

        self.nt_slots = self._sparse_data_var[2:3]
M
malin10 已提交
171
        nt_embs = [
M
malin10 已提交
172 173 174 175
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.nt_slots
        ]
M
malin10 已提交
176
        nt_encodes = [
T
tangwei 已提交
177 178
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(nt_embs)
M
malin10 已提交
179
        ]
M
malin10 已提交
180 181
        nt_concat = fluid.layers.concat(nt_encodes)
        nt_hid = fluid.layers.fc(nt_concat,
M
malin10 已提交
182 183 184
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')
M
malin10 已提交
185
        cos_neg = fluid.layers.cos_sim(q_hid, nt_hid)
M
malin10 已提交
186

M
malin10 已提交
187
        # pairwise hinge_loss
M
malin10 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        loss_part1 = fluid.layers.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=cos_pos,
                shape=[-1, 1],
                value=self.margin,
                dtype='float32'),
            cos_pos)

        loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg)

        loss_part3 = fluid.layers.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)

M
malin10 已提交
203
        self._cost = fluid.layers.mean(loss_part3)
T
for mat  
tangwei 已提交
204
        self.acc = self.get_acc(cos_neg, cos_pos)
M
malin10 已提交
205
        self._metrics["loss"] = self._cost
M
malin10 已提交
206 207
        self._metrics["acc"] = self.acc

M
malin10 已提交
208 209 210 211 212 213 214 215
    def get_acc(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        label_ones = fluid.layers.fill_constant_batch_size_like(
            input=x, dtype='float32', shape=[-1, 1], value=1.0)
        correct = fluid.layers.reduce_sum(less)
        total = fluid.layers.reduce_sum(label_ones)
        acc = fluid.layers.elementwise_div(correct, total)
        return acc