model.py 7.2 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf

19 20
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
M
malin10 已提交
21

T
for mat  
tangwei 已提交
22

M
malin10 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')


class CNNEncoder(object):
    """ cnn-encoder"""

    def __init__(self,
                 param_name="cnn",
                 win_size=3,
                 ksize=128,
                 act='tanh',
                 pool_type='max'):
        self.param_name = param_name
        self.win_size = win_size
        self.ksize = ksize
        self.act = act
        self.pool_type = pool_type

    def forward(self, emb):
        return fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=self.ksize,
            filter_size=self.win_size,
            act=self.act,
            pool_type=self.pool_type,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = fluid.layers.fc(input=emb,
                              size=self.hidden_size * 3,
                              param_attr=self.param_name + "_fc.w",
                              bias_attr=False)

        gru_h = fluid.layers.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return fluid.layers.sequence_pool(input=gru_h, pool_type='max')


class SimpleEncoderFactory(object):
    def __init__(self):
        pass

    ''' create an encoder through create function '''

    def create(self, enc_type, enc_hid_size):
        if enc_type == "bow":
            bow_encode = BowEncoder()
            return bow_encode
        elif enc_type == "cnn":
            cnn_encode = CNNEncoder(ksize=enc_hid_size)
            return cnn_encode
        elif enc_type == "gru":
            rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
            return rnn_encode

T
for mat  
tangwei 已提交
98

M
malin10 已提交
99 100 101 102
class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

M
malin10 已提交
103 104 105 106 107 108 109 110
    def _init_hyper_parameters(self):
        self.query_encoder = envs.get_global_env("hyper_parameters.query_encoder")
        self.title_encoder = envs.get_global_env("hyper_parameters.title_encoder")
        self.query_encode_dim = envs.get_global_env("hyper_parameters.query_encode_dim")
        self.title_encode_dim = envs.get_global_env("hyper_parameters.title_encode_dim")

        self.emb_size = envs.get_global_env("hyper_parameters.sparse_feature_dim")
        self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim")
T
for mat  
tangwei 已提交
111
        self.emb_shape = [self.emb_size, self.emb_dim]
M
malin10 已提交
112

M
malin10 已提交
113 114
        self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size")
        self.margin = envs.get_global_env("hyper_parameters.margin")
M
malin10 已提交
115

M
malin10 已提交
116 117 118 119 120 121
    def net(self, input, is_infer=False):
        factory = SimpleEncoderFactory()
        self.q_slots = self._sparse_data_var[0:1]
        self.query_encoders = [
            factory.create(self.query_encoder, self.query_encode_dim)
            for _ in self.q_slots
M
malin10 已提交
122
        ]
T
for mat  
tangwei 已提交
123
        q_embs = [
M
malin10 已提交
124 125 126 127
            fluid.embedding(
                input=query, size=self.emb_shape, param_attr="emb")
            for query in self.q_slots
        ]
M
malin10 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
	# encode each embedding field with encoder
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
	# concat multi view for query, pos_title, neg_title
	q_concat = fluid.layers.concat(q_encodes)
        # projection of hidden layer
	q_hid = fluid.layers.fc(q_concat,
                                size=self.hidden_size,
                                param_attr='q_fc.w',
                                bias_attr='q_fc.b')

	
        self.pt_slots = self._sparse_data_var[1:2]
        self.title_encoders = [
            factory.create(self.title_encoder, self.title_encode_dim)
        ]
	pt_embs = [
M
malin10 已提交
146 147 148 149
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.pt_slots
        ]
M
malin10 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
	pt_encodes = [
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(pt_embs)
        ]
	pt_concat = fluid.layers.concat(pt_encodes)
	pt_hid = fluid.layers.fc(pt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')
	# cosine of hidden layers
	cos_pos = fluid.layers.cos_sim(q_hid, pt_hid)

        if is_infer:
	    self._infer_results['query_pt_sim'] = cos_pos
	    return

        self.nt_slots = self._sparse_data_var[2:3]
	nt_embs = [
M
malin10 已提交
168 169 170 171
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.nt_slots
        ]
M
malin10 已提交
172
	nt_encodes = [
T
tangwei 已提交
173 174
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(nt_embs)
M
malin10 已提交
175
        ]
M
malin10 已提交
176 177
	nt_concat = fluid.layers.concat(nt_encodes)
	nt_hid = fluid.layers.fc(nt_concat,
M
malin10 已提交
178 179 180
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')
M
malin10 已提交
181
	cos_neg = fluid.layers.cos_sim(q_hid, nt_hid)
M
malin10 已提交
182

M
malin10 已提交
183
	# pairwise hinge_loss
M
malin10 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        loss_part1 = fluid.layers.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=cos_pos,
                shape=[-1, 1],
                value=self.margin,
                dtype='float32'),
            cos_pos)

        loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg)

        loss_part3 = fluid.layers.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)

M
malin10 已提交
199
        self._cost = fluid.layers.mean(loss_part3)
T
for mat  
tangwei 已提交
200
        self.acc = self.get_acc(cos_neg, cos_pos)
M
malin10 已提交
201
	self._metrics["loss"] = self._cost
M
malin10 已提交
202 203
        self._metrics["acc"] = self.acc

M
malin10 已提交
204 205 206 207 208 209 210 211
    def get_acc(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
        label_ones = fluid.layers.fill_constant_batch_size_like(
            input=x, dtype='float32', shape=[-1, 1], value=1.0)
        correct = fluid.layers.reduce_sum(less)
        total = fluid.layers.reduce_sum(label_ones)
        acc = fluid.layers.elementwise_div(correct, total)
        return acc