run.py 19.5 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei 已提交
15
import os
T
tangwei 已提交
16
import subprocess
X
test  
xjqbest 已提交
17
import sys
T
tangwei 已提交
18 19
import argparse
import tempfile
20
import warnings
C
Chengmo 已提交
21

X
fix  
xjqbest 已提交
22
import copy
23 24 25
from paddlerec.core.factory import TrainerFactory
from paddlerec.core.utils import envs
from paddlerec.core.utils import util
X
test  
xjqbest 已提交
26
from paddlerec.core.utils import validation
T
tangwei 已提交
27

T
tangwei 已提交
28 29
engines = {}
device = ["CPU", "GPU"]
J
Jinhua Liang 已提交
30 31

engine_choices = ["TRAIN", "INFER", "LOCAL_CLUSTER_TRAIN", "CLUSTER_TRAIN"]
T
tangwei 已提交
32 33


T
tangwei 已提交
34
def engine_registry():
T
tangwei 已提交
35 36 37
    engines["TRANSPILER"] = {}
    engines["PSLIB"] = {}

C
Chengmo 已提交
38 39 40
    engines["TRANSPILER"]["TRAIN"] = single_train_engine
    engines["TRANSPILER"]["INFER"] = single_infer_engine
    engines["TRANSPILER"]["LOCAL_CLUSTER_TRAIN"] = local_cluster_engine
C
Chengmo 已提交
41
    engines["TRANSPILER"]["CLUSTER_TRAIN"] = cluster_engine
C
Chengmo 已提交
42 43 44
    engines["PSLIB"]["TRAIN"] = local_mpi_engine
    engines["PSLIB"]["LOCAL_CLUSTER_TRAIN"] = local_mpi_engine
    engines["PSLIB"]["CLUSTER_TRAIN"] = cluster_mpi_engine
T
tangwei 已提交
45
    engines["PSLIB"]["CLUSTER"] = cluster_mpi_engine
T
tangwei 已提交
46

T
tangwei 已提交
47

X
fix  
xjqbest 已提交
48
def get_inters_from_yaml(file, filters):
X
test  
xjqbest 已提交
49
    _envs = envs.load_yaml(file)
T
tangwei 已提交
50 51 52
    flattens = envs.flatten_environs(_envs)
    inters = {}
    for k, v in flattens.items():
X
fix  
xjqbest 已提交
53 54 55
        for f in filters:
            if k.startswith(f):
                inters[k] = v
T
tangwei 已提交
56
    return inters
T
tangwei 已提交
57 58


X
fix  
xjqbest 已提交
59
def get_all_inters_from_yaml(file, filters):
C
Chengmo 已提交
60
    _envs = envs.load_yaml(file)
X
fix  
xjqbest 已提交
61 62 63 64 65 66 67 68 69 70 71 72
    all_flattens = {}

    def fatten_env_namespace(namespace_nests, local_envs):
        for k, v in local_envs.items():
            if isinstance(v, dict):
                nests = copy.deepcopy(namespace_nests)
                nests.append(k)
                fatten_env_namespace(nests, v)
            elif (k == "dataset" or k == "phase" or
                  k == "runner") and isinstance(v, list):
                for i in v:
                    if i.get("name") is None:
C
Chengmo 已提交
73
                        raise ValueError("name must be in dataset list. ", v)
X
fix  
xjqbest 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    nests.append(i["name"])
                    fatten_env_namespace(nests, i)
            else:
                global_k = ".".join(namespace_nests + [k])
                all_flattens[global_k] = v

    fatten_env_namespace([], _envs)
    ret = {}
    for k, v in all_flattens.items():
        for f in filters:
            if k.startswith(f):
                ret[k] = v
    return ret


T
tangwei 已提交
91 92 93 94 95 96 97 98
def get_modes(running_config):
    if not isinstance(running_config, dict):
        raise ValueError("get_modes arguments must be [dict]")

    modes = running_config.get("mode")
    if not modes:
        raise ValueError("yaml mast have config: mode")

T
tangwei 已提交
99 100 101
    if isinstance(modes, str):
        modes = [modes]

T
tangwei 已提交
102 103 104 105
    return modes


def get_engine(args, running_config, mode):
T
tangwei 已提交
106
    transpiler = get_transpiler()
X
fix  
xjqbest 已提交
107

T
tangwei 已提交
108 109
    engine_class = ".".join(["runner", mode, "class"])
    engine_device = ".".join(["runner", mode, "device"])
C
Chengmo 已提交
110
    device_gpu_choices = ".".join(["runner", mode, "selected_gpus"])
T
tangwei 已提交
111 112

    engine = running_config.get(engine_class, None)
X
fix  
xjqbest 已提交
113
    if engine is None:
C
Chengmo 已提交
114 115
        raise ValueError("not find {} in engine_class , please check".format(
            engine))
T
tangwei 已提交
116 117
    device = running_config.get(engine_device, None)

T
tangwei 已提交
118 119 120
    engine = engine.upper()
    device = device.upper()

T
tangwei 已提交
121 122 123
    if device is None:
        print("not find device be specified in yaml, set CPU as default")
        device = "CPU"
C
Chengmo 已提交
124

T
tangwei 已提交
125
    if device == "GPU":
T
tangwei 已提交
126 127 128 129 130 131
        selected_gpus = running_config.get(device_gpu_choices, None)

        if selected_gpus is None:
            print(
                "not find selected_gpus be specified in yaml, set `0` as default"
            )
C
Chengmo 已提交
132
            selected_gpus = "0"
T
tangwei 已提交
133 134 135 136
        else:
            print("selected_gpus {} will be specified for running".format(
                selected_gpus))

C
Chengmo 已提交
137 138
        selected_gpus_num = len(selected_gpus.split(","))
        if selected_gpus_num > 1:
J
Jinhua Liang 已提交
139
            engine = "LOCAL_CLUSTER_TRAIN"
C
Chengmo 已提交
140

T
tangwei 已提交
141
    if engine not in engine_choices:
C
Chengmo 已提交
142 143
        raise ValueError("{} can only be chosen in {}".format(engine_class,
                                                              engine_choices))
T
tangwei 已提交
144

T
tangwei 已提交
145
    run_engine = engines[transpiler].get(engine, None)
T
tangwei 已提交
146 147 148 149
    return run_engine


def get_transpiler():
T
tangwei 已提交
150
    FNULL = open(os.devnull, 'w')
T
tangwei 已提交
151 152 153 154
    cmd = [
        "python", "-c",
        "import paddle.fluid as fluid; fleet_ptr = fluid.core.Fleet(); [fleet_ptr.copy_table_by_feasign(10, 10, [2020, 1010])];"
    ]
T
tangwei 已提交
155 156 157
    proc = subprocess.Popen(cmd, stdout=FNULL, stderr=FNULL, cwd=os.getcwd())
    ret = proc.wait()
    if ret == -11:
T
tangwei 已提交
158
        return "PSLIB"
T
tangwei 已提交
159
    else:
T
tangwei 已提交
160
        return "TRANSPILER"
T
tangwei 已提交
161 162


T
tangwei 已提交
163 164 165
def set_runtime_envs(cluster_envs, engine_yaml):
    if cluster_envs is None:
        cluster_envs = {}
T
tangwei 已提交
166 167

    envs.set_runtime_environs(cluster_envs)
T
fix bug  
tangwei 已提交
168 169 170

    need_print = {}
    for k, v in os.environ.items():
T
tangwei 已提交
171
        if k.startswith("train.trainer."):
T
fix bug  
tangwei 已提交
172 173 174
            need_print[k] = v

    print(envs.pretty_print_envs(need_print, ("Runtime Envs", "Value")))
T
tangwei 已提交
175 176


C
Chengmo 已提交
177
def single_train_engine(args):
T
tangwei 已提交
178 179 180 181 182 183 184 185 186 187 188 189
    run_extras = get_all_inters_from_yaml(args.model, ["runner."])
    mode = envs.get_runtime_environ("mode")
    trainer_class = ".".join(["runner", mode, "trainer_class"])
    fleet_class = ".".join(["runner", mode, "fleet_mode"])
    device_class = ".".join(["runner", mode, "device"])
    selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])

    trainer = run_extras.get(trainer_class, "GeneralTrainer")
    fleet_mode = run_extras.get(fleet_class, "ps")
    device = run_extras.get(device_class, "cpu")
    selected_gpus = run_extras.get(selected_gpus_class, "0")
    executor_mode = "train"
T
tangwei 已提交
190

T
tangwei 已提交
191
    single_envs = {}
C
Chengmo 已提交
192 193

    if device.upper() == "GPU":
T
tangwei 已提交
194 195 196 197 198 199 200 201
        selected_gpus_num = len(selected_gpus.split(","))
        if selected_gpus_num != 1:
            raise ValueError(
                "Single Mode Only Support One GPU, Set Local Cluster Mode to use Multi-GPUS"
            )

        single_envs["selsected_gpus"] = selected_gpus
        single_envs["FLAGS_selected_gpus"] = selected_gpus
C
chengmo 已提交
202

C
chengmo 已提交
203
    single_envs["train.trainer.trainer"] = trainer
C
Chengmo 已提交
204 205
    single_envs["fleet_mode"] = fleet_mode
    single_envs["train.trainer.executor_mode"] = executor_mode
C
chengmo 已提交
206 207
    single_envs["train.trainer.threads"] = "2"
    single_envs["train.trainer.platform"] = envs.get_platform()
C
Chengmo 已提交
208 209
    single_envs["train.trainer.engine"] = "single"

X
fix  
xjqbest 已提交
210 211 212
    set_runtime_envs(single_envs, args.model)
    trainer = TrainerFactory.create(args.model)
    return trainer
X
fix  
xjqbest 已提交
213

X
fix  
xjqbest 已提交
214 215

def single_infer_engine(args):
T
tangwei 已提交
216
    run_extras = get_all_inters_from_yaml(args.model, ["runner."])
C
Chengmo 已提交
217

T
tangwei 已提交
218 219 220 221 222
    mode = envs.get_runtime_environ("mode")
    trainer_class = ".".join(["runner", mode, "trainer_class"])
    fleet_class = ".".join(["runner", mode, "fleet_mode"])
    device_class = ".".join(["runner", mode, "device"])
    selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
C
Chengmo 已提交
223

224 225 226 227 228 229 230 231
    epochs_class = ".".join(["runner", mode, "epochs"])
    epochs = run_extras.get(epochs_class, 1)
    if epochs > 1:
        warnings.warn(
            "It makes no sense to predict the same model for multiple epochs",
            category=UserWarning,
            stacklevel=2)

T
tangwei 已提交
232 233 234 235
    trainer = run_extras.get(trainer_class, "GeneralTrainer")
    fleet_mode = run_extras.get(fleet_class, "ps")
    device = run_extras.get(device_class, "cpu")
    selected_gpus = run_extras.get(selected_gpus_class, "0")
C
Chengmo 已提交
236 237
    executor_mode = "infer"

T
tangwei 已提交
238 239
    single_envs = {}

C
Chengmo 已提交
240
    if device.upper() == "GPU":
T
tangwei 已提交
241 242 243 244 245 246 247 248
        selected_gpus_num = len(selected_gpus.split(","))
        if selected_gpus_num != 1:
            raise ValueError(
                "Single Mode Only Support One GPU, Set Local Cluster Mode to use Multi-GPUS"
            )

        single_envs["selsected_gpus"] = selected_gpus
        single_envs["FLAGS_selected_gpus"] = selected_gpus
C
Chengmo 已提交
249

X
fix  
xjqbest 已提交
250
    single_envs["train.trainer.trainer"] = trainer
C
Chengmo 已提交
251 252
    single_envs["train.trainer.executor_mode"] = executor_mode
    single_envs["fleet_mode"] = fleet_mode
X
fix  
xjqbest 已提交
253 254
    single_envs["train.trainer.threads"] = "2"
    single_envs["train.trainer.platform"] = envs.get_platform()
C
Chengmo 已提交
255 256
    single_envs["train.trainer.engine"] = "single"

X
fix  
xjqbest 已提交
257 258 259
    set_runtime_envs(single_envs, args.model)
    trainer = TrainerFactory.create(args.model)
    return trainer
C
chengmo 已提交
260

X
fix  
xjqbest 已提交
261

T
tangwei 已提交
262
def cluster_engine(args):
T
tangwei 已提交
263
    def master():
264
        from paddlerec.core.engine.cluster.cluster import ClusterEngine
C
Chengmo 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298

        # Get fleet_mode & device
        run_extras = get_all_inters_from_yaml(args.model, ["runner."])
        mode = envs.get_runtime_environ("mode")
        fleet_class = ".".join(["runner", mode, "fleet_mode"])
        device_class = ".".join(["runner", mode, "device"])
        fleet_mode = run_extras.get(fleet_class, "ps")
        device = run_extras.get(device_class, "cpu")
        device = device.upper()
        fleet_mode = fleet_mode.upper()

        if fleet_mode == "COLLECTIVE" and device != "GPU":
            raise ValueError("COLLECTIVE can not be used without GPU")

        # Get Thread nums
        model_envs = envs.load_yaml(args.model)
        phases_class = ".".join(["runner", mode, "phases"])
        phase_names = run_extras.get(phases_class)
        phases = []
        all_phases = model_envs.get("phase")
        if phase_names is None:
            phases = all_phases
        else:
            for phase in all_phases:
                if phase["name"] in phase_names:
                    phases.append(phase)

        thread_num = []
        for phase in phases:
            thread_num.append(int(phase["thread_num"]))
        max_thread_num = max(thread_num)

        backend_envs = envs.load_yaml(args.backend)
        flattens = envs.flatten_environs(backend_envs, "_")
J
Jinhua Liang 已提交
299 300
        flattens["engine_role"] = "MASTER"
        flattens["engine_mode"] = envs.get_runtime_environ("mode")
T
tangwei 已提交
301
        flattens["engine_run_config"] = args.model
C
Chengmo 已提交
302 303 304 305
        flattens["max_thread_num"] = max_thread_num
        flattens["fleet_mode"] = fleet_mode
        flattens["device"] = device
        flattens["backend_yaml"] = args.backend
T
tangwei 已提交
306 307 308 309 310
        envs.set_runtime_environs(flattens)

        launch = ClusterEngine(None, args.model)
        return launch

J
Jinhua Liang 已提交
311 312 313
    def worker(mode):
        if not mode:
            raise ValueError("mode: {} can not be recognized")
C
Chengmo 已提交
314
        from paddlerec.core.engine.cluster.cluster import ClusterEngine
J
Jinhua Liang 已提交
315 316 317 318 319 320 321 322 323 324 325 326

        run_extras = get_all_inters_from_yaml(args.model, ["runner."])

        trainer_class = ".".join(["runner", mode, "trainer_class"])
        fleet_class = ".".join(["runner", mode, "fleet_mode"])
        device_class = ".".join(["runner", mode, "device"])
        strategy_class = ".".join(["runner", mode, "distribute_strategy"])
        trainer = run_extras.get(trainer_class, "GeneralTrainer")
        fleet_mode = run_extras.get(fleet_class, "ps")
        device = run_extras.get(device_class, "cpu")
        distributed_strategy = run_extras.get(strategy_class, "async")
        executor_mode = "train"
C
Chengmo 已提交
327

J
Jinhua Liang 已提交
328 329 330
        device = device.upper()
        fleet_mode = fleet_mode.upper()
        if fleet_mode == "COLLECTIVE" and device != "GPU":
C
Chengmo 已提交
331
            raise ValueError("COLLECTIVE can not be used without GPU")
C
Chengmo 已提交
332

J
Jinhua Liang 已提交
333
        cluster_envs = {}
C
Chengmo 已提交
334 335

        cluster_envs["fleet_mode"] = fleet_mode
C
Chengmo 已提交
336
        cluster_envs["engine_role"] = "WORKER"
T
tangwei 已提交
337 338
        cluster_envs["train.trainer.trainer"] = trainer
        cluster_envs["train.trainer.engine"] = "cluster"
J
Jinhua Liang 已提交
339
        cluster_envs["train.trainer.executor_mode"] = executor_mode
C
Chengmo 已提交
340
        cluster_envs["train.trainer.strategy"] = distributed_strategy
T
tangwei 已提交
341 342
        cluster_envs["train.trainer.threads"] = envs.get_runtime_environ(
            "CPU_NUM")
T
tangwei 已提交
343
        cluster_envs["train.trainer.platform"] = envs.get_platform()
C
chengmo 已提交
344 345
        print("launch {} engine with cluster to with model: {}".format(
            trainer, args.model))
T
tangwei 已提交
346

C
Chengmo 已提交
347 348 349
        set_runtime_envs(cluster_envs, args.model)
        launch = ClusterEngine(None, args.model)
        return launch
T
tangwei 已提交
350

T
tangwei 已提交
351 352 353
    role = os.getenv("PADDLE_PADDLEREC_ROLE", "MASTER")

    if role == "WORKER":
C
Chengmo 已提交
354
        mode = os.getenv("mode", None)
J
Jinhua Liang 已提交
355
        return worker(mode)
T
tangwei 已提交
356 357
    else:
        return master()
C
chengmo 已提交
358 359


T
tangwei 已提交
360
def cluster_mpi_engine(args):
T
tangwei 已提交
361 362
    print("launch cluster engine with cluster to run model: {}".format(
        args.model))
T
tangwei 已提交
363

T
fix bug  
tangwei 已提交
364
    cluster_envs = {}
T
tangwei 已提交
365
    cluster_envs["train.trainer.trainer"] = "CtrCodingTrainer"
T
tangwei 已提交
366
    cluster_envs["train.trainer.platform"] = envs.get_platform()
T
tangwei 已提交
367

T
tangwei 已提交
368
    set_runtime_envs(cluster_envs, args.model)
T
tangwei 已提交
369

T
tangwei 已提交
370 371 372 373 374
    trainer = TrainerFactory.create(args.model)
    return trainer


def local_cluster_engine(args):
J
Jinhua Liang 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    def get_worker_num(run_extras, workers):
        _envs = envs.load_yaml(args.model)
        mode = envs.get_runtime_environ("mode")
        workspace = envs.get_runtime_environ("workspace")
        phases_class = ".".join(["runner", mode, "phases"])
        phase_names = run_extras.get(phases_class)
        phases = []
        all_phases = _envs.get("phase")
        if phase_names is None:
            phases = all_phases
        else:
            for phase in all_phases:
                if phase["name"] in phase_names:
                    phases.append(phase)

        dataset_names = []
        for phase in phases:
            dataset_names.append(phase["dataset_name"])

        datapaths = []
        for dataset in _envs.get("dataset"):
            if dataset["name"] in dataset_names:
                datapaths.append(dataset["data_path"])

        if not datapaths:
            raise ValueError("data path must exist for training/inference")

        datapaths = [
            envs.workspace_adapter_by_specific(path, workspace)
            for path in datapaths
        ]
406

J
Jinhua Liang 已提交
407 408
        all_workers = [len(os.listdir(path)) for path in datapaths]
        all_workers.append(workers)
409 410 411 412 413 414 415 416 417 418
        max_worker_num = min(all_workers)

        if max_worker_num >= workers:
            return workers

        print(
            "phases do not have enough datas for training, set worker/gpu cards num from {} to {}".
            format(workers, max_worker_num))

        return max_worker_num
C
chengmo 已提交
419

J
Jinhua Liang 已提交
420
    from paddlerec.core.engine.local_cluster import LocalClusterEngine
C
Chengmo 已提交
421

J
Jinhua Liang 已提交
422 423 424 425 426 427 428 429 430
    run_extras = get_all_inters_from_yaml(args.model, ["runner."])
    mode = envs.get_runtime_environ("mode")
    trainer_class = ".".join(["runner", mode, "trainer_class"])
    fleet_class = ".".join(["runner", mode, "fleet_mode"])
    device_class = ".".join(["runner", mode, "device"])
    selected_gpus_class = ".".join(["runner", mode, "selected_gpus"])
    strategy_class = ".".join(["runner", mode, "distribute_strategy"])
    worker_class = ".".join(["runner", mode, "worker_num"])
    server_class = ".".join(["runner", mode, "server_num"])
C
Chengmo 已提交
431

J
Jinhua Liang 已提交
432 433 434 435 436
    trainer = run_extras.get(trainer_class, "GeneralTrainer")
    fleet_mode = run_extras.get(fleet_class, "ps")
    device = run_extras.get(device_class, "cpu")
    selected_gpus = run_extras.get(selected_gpus_class, "0")
    distributed_strategy = run_extras.get(strategy_class, "async")
C
Chengmo 已提交
437
    executor_mode = "train"
J
Jinhua Liang 已提交
438 439 440 441 442 443 444

    worker_num = run_extras.get(worker_class, 1)
    server_num = run_extras.get(server_class, 1)

    device = device.upper()
    fleet_mode = fleet_mode.upper()

445 446 447 448 449 450 451 452 453 454
    cluster_envs = {}

    # Todo: delete follow hard code when paddle support ps-gpu.
    if device == "CPU":
        fleet_mode = "PS"
    elif device == "GPU":
        fleet_mode = "COLLECTIVE"
    if fleet_mode == "PS" and device != "CPU":
        raise ValueError("PS can not be used with GPU")

J
Jinhua Liang 已提交
455
    if fleet_mode == "COLLECTIVE" and device != "GPU":
456
        raise ValueError("COLLECTIVE can not be used without GPU")
C
Chengmo 已提交
457

458 459
    if fleet_mode == "PS":
        worker_num = get_worker_num(run_extras, worker_num)
J
Jinhua Liang 已提交
460

461
    if fleet_mode == "COLLECTIVE":
J
Jinhua Liang 已提交
462
        cluster_envs["selected_gpus"] = selected_gpus
463
        gpus = selected_gpus.split(",")
C
Chengmo 已提交
464 465
        worker_num = get_worker_num(run_extras, len(gpus))
        cluster_envs["selected_gpus"] = ','.join(gpus[:worker_num])
J
Jinhua Liang 已提交
466

C
Chengmo 已提交
467 468
    cluster_envs["server_num"] = server_num
    cluster_envs["worker_num"] = worker_num
C
chengmo 已提交
469
    cluster_envs["start_port"] = envs.find_free_port()
C
Chengmo 已提交
470
    cluster_envs["fleet_mode"] = fleet_mode
C
chengmo 已提交
471
    cluster_envs["log_dir"] = "logs"
C
chengmo 已提交
472
    cluster_envs["train.trainer.trainer"] = trainer
C
Chengmo 已提交
473 474
    cluster_envs["train.trainer.executor_mode"] = executor_mode
    cluster_envs["train.trainer.strategy"] = distributed_strategy
C
chengmo 已提交
475
    cluster_envs["train.trainer.threads"] = "2"
J
Jinhua Liang 已提交
476
    cluster_envs["CPU_NUM"] = cluster_envs["train.trainer.threads"]
C
chengmo 已提交
477 478 479
    cluster_envs["train.trainer.engine"] = "local_cluster"
    cluster_envs["train.trainer.platform"] = envs.get_platform()

T
tangwei 已提交
480 481
    print("launch {} engine with cluster to run model: {}".format(trainer,
                                                                  args.model))
C
chengmo 已提交
482 483 484 485 486 487

    set_runtime_envs(cluster_envs, args.model)
    launch = LocalClusterEngine(cluster_envs, args.model)
    return launch


T
tangwei 已提交
488
def local_mpi_engine(args):
T
tangwei 已提交
489 490
    print("launch cluster engine with cluster to run model: {}".format(
        args.model))
491
    from paddlerec.core.engine.local_mpi import LocalMPIEngine
T
tangwei 已提交
492

T
tangwei 已提交
493 494
    print("use 1X1 MPI ClusterTraining at localhost to run model: {}".format(
        args.model))
T
tangwei 已提交
495

T
tangwei 已提交
496 497 498
    mpi = util.run_which("mpirun")
    if not mpi:
        raise RuntimeError("can not find mpirun, please check environment")
C
Chengmo 已提交
499

J
Jinhua Liang 已提交
500 501 502 503 504 505
    run_extras = get_all_inters_from_yaml(args.model, ["runner."])

    mode = envs.get_runtime_environ("mode")
    trainer_class = ".".join(["runner", mode, "trainer_class"])
    fleet_class = ".".join(["runner", mode, "fleet_mode"])
    distributed_strategy = "async"
C
Chengmo 已提交
506 507
    executor_mode = "train"

J
Jinhua Liang 已提交
508 509
    trainer = run_extras.get(trainer_class, "GeneralTrainer")
    fleet_mode = run_extras.get(fleet_class, "ps")
C
Chengmo 已提交
510

T
fix bug  
tangwei 已提交
511 512
    cluster_envs = {}
    cluster_envs["mpirun"] = mpi
C
Chengmo 已提交
513
    cluster_envs["train.trainer.trainer"] = trainer
T
fix bug  
tangwei 已提交
514
    cluster_envs["log_dir"] = "logs"
T
tangwei 已提交
515
    cluster_envs["train.trainer.engine"] = "local_cluster"
C
Chengmo 已提交
516 517 518 519
    cluster_envs["train.trainer.executor_mode"] = executor_mode
    cluster_envs["fleet_mode"] = fleet_mode
    cluster_envs["train.trainer.strategy"] = distributed_strategy
    cluster_envs["train.trainer.threads"] = "2"
T
tangwei 已提交
520
    cluster_envs["train.trainer.platform"] = envs.get_platform()
T
tangwei 已提交
521

T
tangwei 已提交
522
    set_runtime_envs(cluster_envs, args.model)
T
tangwei 已提交
523 524 525 526
    launch = LocalMPIEngine(cluster_envs, args.model)
    return launch


T
tangwei 已提交
527
def get_abs_model(model):
528
    if model.startswith("paddlerec."):
T
tangwei 已提交
529
        dir = envs.paddlerec_adapter(model)
T
tangwei 已提交
530
        path = os.path.join(dir, "config.yaml")
T
tangwei 已提交
531 532 533 534 535 536 537
    else:
        if not os.path.isfile(model):
            raise IOError("model config: {} invalid".format(model))
        path = model
    return path


T
tangwei 已提交
538
if __name__ == "__main__":
539
    parser = argparse.ArgumentParser(description='paddle-rec run')
T
tangwei 已提交
540
    parser.add_argument("-m", "--model", type=str)
T
tangwei 已提交
541
    parser.add_argument("-b", "--backend", type=str, default=None)
T
tangwei 已提交
542

T
tangwei 已提交
543 544 545
    abs_dir = os.path.dirname(os.path.abspath(__file__))
    envs.set_runtime_environs({"PACKAGE_BASE": abs_dir})

T
tangwei 已提交
546
    args = parser.parse_args()
T
tangwei 已提交
547
    args.model = get_abs_model(args.model)
T
tangwei 已提交
548

X
test  
xjqbest 已提交
549 550
    if not validation.yaml_validation(args.model):
        sys.exit(-1)
T
tangwei 已提交
551

T
tangwei 已提交
552
    engine_registry()
J
Jinhua Liang 已提交
553 554
    running_config = get_all_inters_from_yaml(
        args.model, ["workspace", "mode", "runner."])
T
tangwei 已提交
555 556 557
    modes = get_modes(running_config)

    for mode in modes:
J
Jinhua Liang 已提交
558 559 560 561
        envs.set_runtime_environs({
            "mode": mode,
            "workspace": running_config["workspace"]
        })
T
tangwei 已提交
562 563 564
        which_engine = get_engine(args, running_config, mode)
        engine = which_engine(args)
        engine.run()