Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
29d464d3
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
29d464d3
编写于
4月 20, 2020
作者:
T
tangwei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update code
上级
3a3fe12f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
73 addition
and
47 deletion
+73
-47
fleetrec/core/factory.py
fleetrec/core/factory.py
+28
-20
fleetrec/core/utils/envs.py
fleetrec/core/utils/envs.py
+2
-5
fleetrec/models/ctr_dnn/model.py
fleetrec/models/ctr_dnn/model.py
+3
-3
fleetrec/run.py
fleetrec/run.py
+40
-19
未找到文件。
fleetrec/core/factory.py
浏览文件 @
29d464d3
...
...
@@ -19,6 +19,19 @@ import yaml
from
fleetrec.core.utils
import
envs
trainer_abs
=
os
.
path
.
join
(
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
)),
"trainers"
)
trainers
=
{}
def
trainer_registry
():
trainers
[
"SingleTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer.py"
)
trainers
[
"ClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"cluster_trainer.py"
)
trainers
[
"CtrCodingTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_coding_trainer.py"
)
trainers
[
"CtrModulTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"ctr_modul_trainer.py"
)
trainer_registry
()
class
TrainerFactory
(
object
):
def
__init__
(
self
):
...
...
@@ -28,26 +41,21 @@ class TrainerFactory(object):
def
_build_trainer
(
yaml_path
):
print
(
envs
.
pretty_print_envs
(
envs
.
get_global_envs
()))
train_mode
=
envs
.
get_training_mode
()
if
train_mode
==
"SingleTraining"
:
from
fleetrec.core.trainers.single_trainer
import
SingleTrainer
trainer
=
SingleTrainer
(
yaml_path
)
elif
train_mode
==
"ClusterTraining"
:
from
fleetrec.core.trainers.cluster_trainer
import
ClusterTrainer
trainer
=
ClusterTrainer
(
yaml_path
)
elif
train_mode
==
"CtrTraining"
:
from
fleetrec.core.trainers.ctr_coding_trainer
import
CtrPaddleTrainer
trainer
=
CtrPaddleTrainer
(
yaml_path
)
elif
train_mode
==
"UserDefineTraining"
:
train_location
=
envs
.
get_global_env
(
"train.location"
)
train_dirname
=
os
.
path
.
dirname
(
train_location
)
base_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
train_location
))[
0
]
sys
.
path
.
append
(
train_dirname
)
trainer_class
=
envs
.
lazy_instance
(
base_name
,
"UserDefineTrainer"
)
trainer
=
trainer_class
(
yaml_path
)
else
:
raise
ValueError
(
"trainer only support SingleTraining/ClusterTraining"
)
train_mode
=
envs
.
get_trainer
()
trainer_abs
=
trainers
.
get
(
train_mode
,
None
)
if
trainer_abs
is
None
:
if
not
os
.
path
.
exists
(
train_mode
)
or
os
.
path
.
isfile
(
train_mode
):
raise
ValueError
(
"trainer {} can not be recognized"
)
trainer_abs
=
train_mode
train_mode
=
"UserDefineTrainer"
train_location
=
envs
.
get_global_env
(
"train.location"
)
train_dirname
=
os
.
path
.
dirname
(
trainer_abs
)
base_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
train_location
))[
0
]
sys
.
path
.
append
(
train_dirname
)
trainer_class
=
envs
.
lazy_instance
(
base_name
,
train_mode
)
trainer
=
trainer_class
(
yaml_path
)
return
trainer
@
staticmethod
...
...
fleetrec/core/utils/envs.py
浏览文件 @
29d464d3
...
...
@@ -29,11 +29,8 @@ def get_runtime_envion(key):
return
os
.
getenv
(
key
,
None
)
def
get_training_mode
():
train_mode
=
get_global_env
(
"train.trainer"
)
if
train_mode
is
None
:
train_mode
=
get_runtime_envion
(
"train.trainer"
)
def
get_trainer
():
train_mode
=
get_runtime_envion
(
"trainer.trainer"
)
return
train_mode
...
...
fleetrec/models/ctr_dnn/model.py
浏览文件 @
29d464d3
...
...
@@ -60,12 +60,12 @@ class Model(ModelBase):
self
.
_data_var
.
append
(
self
.
label_input
)
def
net
(
self
):
train
_mode
=
envs
.
get_training_mode
()
train
er
=
envs
.
get_trainer
()
is_distributed
=
True
if
train
_mode
==
"CtrTraining
"
else
False
is_distributed
=
True
if
train
er
==
"CtrTrainer
"
else
False
sparse_feature_number
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_number"
,
None
,
self
.
namespace
)
sparse_feature_dim
=
envs
.
get_global_env
(
"hyper_parameters.sparse_feature_dim"
,
None
,
self
.
namespace
)
sparse_feature_dim
=
9
if
train
_mode
==
"CtrTraining
"
else
sparse_feature_dim
sparse_feature_dim
=
9
if
train
er
==
"CtrTrainer
"
else
sparse_feature_dim
def
embedding_layer
(
input
):
emb
=
fluid
.
layers
.
embedding
(
...
...
fleetrec/run.py
浏览文件 @
29d464d3
import
argparse
import
os
import
sys
import
yaml
from
paddle.fluid.incubate.fleet.parameter_server
import
version
...
...
@@ -10,6 +9,19 @@ from fleetrec.core.utils import envs
from
fleetrec.core.utils
import
util
engines
=
{
"TRAINSPILER"
:
{},
"PSLIB"
:
{}}
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
def
set_runtime_envs
(
cluster_envs
,
engine_yaml
):
if
engine_yaml
is
not
None
:
with
open
(
engine_yaml
,
'r'
)
as
rb
:
_envs
=
yaml
.
load
(
rb
.
read
(),
Loader
=
yaml
.
FullLoader
)
if
cluster_envs
is
None
:
cluster_envs
=
{}
cluster_envs
.
update
(
_envs
)
envs
.
set_runtime_envions
(
cluster_envs
)
print
(
envs
.
pretty_print_envs
(
cluster_envs
,
(
"Runtime Envs"
,
"Value"
)))
def
engine_registry
():
...
...
@@ -34,35 +46,38 @@ def get_engine(engine):
def
single_engine
(
args
):
print
(
"use
SingleTraining
to run model: {}"
.
format
(
args
.
model
))
single_envs
=
{
"train.trainer"
:
"SingleTraining"
}
print
(
"use
single engine
to run model: {}"
.
format
(
args
.
model
))
single_envs
=
{
"train
er
.trainer"
:
"SingleTraining"
}
print
(
envs
.
pretty_print_envs
(
single_envs
,
(
"Single Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
single_envs
)
set_runtime_envs
(
single_envs
,
args
.
engine_extras
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
print
(
"launch ClusterTraining with cluster to run model: {}"
.
format
(
args
.
model
))
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
cluster_envs
=
{
"trainer.trainer"
:
"ClusterTraining"
}
set_runtime_envs
(
cluster_envs
,
args
.
engine_extras
)
cluster_envs
=
{
"train.trainer"
:
"ClusterTraining"
}
envs
.
set_runtime_envions
(
cluster_envs
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_mpi_engine
(
args
):
print
(
"launch ClusterTraining with cluster to run model: {}"
.
format
(
args
.
model
))
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
cluster_envs
=
{
"trainer.trainer"
:
"CtrTraining"
}
set_runtime_envs
(
cluster_envs
,
args
.
engine_extras
)
cluster_envs
=
{
"train.trainer"
:
"CtrTraining"
}
envs
.
set_runtime_envions
(
cluster_envs
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
local_cluster_engine
(
args
):
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
from
fleetrec.core.engine.local_cluster_engine
import
LocalClusterEngine
cluster_envs
=
{}
...
...
@@ -70,17 +85,17 @@ def local_cluster_engine(args):
cluster_envs
[
"worker_num"
]
=
1
cluster_envs
[
"start_port"
]
=
36001
cluster_envs
[
"log_dir"
]
=
"logs"
cluster_envs
[
"train.trainer"
]
=
"ClusterTraining"
cluster_envs
[
"train.strategy.mode"
]
=
"async"
cluster_envs
[
"train
er
.trainer"
]
=
"ClusterTraining"
cluster_envs
[
"train
er
.strategy.mode"
]
=
"async"
print
(
envs
.
pretty_print_envs
(
cluster_envs
,
(
"Local Cluster Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
cluster_envs
)
set_runtime_envs
(
cluster_envs
,
args
.
engine_extras
)
launch
=
LocalClusterEngine
(
cluster_envs
,
args
.
model
)
return
launch
def
local_mpi_engine
(
args
):
print
(
"launch cluster engine with cluster to run model: {}"
.
format
(
args
.
model
))
from
fleetrec.core.engine.local_mpi_engine
import
LocalMPIEngine
print
(
"use 1X1 MPI ClusterTraining at localhost to run model: {}"
.
format
(
args
.
model
))
...
...
@@ -89,10 +104,8 @@ def local_mpi_engine(args):
if
not
mpi
:
raise
RuntimeError
(
"can not find mpirun, please check environment"
)
cluster_envs
=
{
"mpirun"
:
mpi
,
"train.trainer"
:
"CtrTraining"
,
"log_dir"
:
"logs"
}
print
(
envs
.
pretty_print_envs
(
cluster_envs
,
(
"Local MPI Cluster Envs"
,
"Value"
)))
envs
.
set_runtime_envions
(
cluster_envs
)
cluster_envs
=
{
"mpirun"
:
mpi
,
"trainer.trainer"
:
"CtrTraining"
,
"log_dir"
:
"logs"
}
set_runtime_envs
(
cluster_envs
,
args
.
engine_extras
)
launch
=
LocalMPIEngine
(
cluster_envs
,
args
.
model
)
return
launch
...
...
@@ -118,13 +131,21 @@ if __name__ == "__main__":
parser
=
argparse
.
ArgumentParser
(
description
=
'fleet-rec run'
)
parser
.
add_argument
(
"-m"
,
"--model"
,
type
=
str
)
parser
.
add_argument
(
"-e"
,
"--engine"
,
type
=
str
)
parser
.
add_argument
(
"-ex"
,
"--engine_extras"
,
type
=
str
)
parser
.
add_argument
(
"-ex"
,
"--engine_extras"
,
default
=
None
,
type
=
str
)
args
=
parser
.
parse_args
()
if
not
os
.
path
.
exists
(
args
.
model
)
or
not
os
.
path
.
isfile
(
args
.
model
):
raise
ValueError
(
"argument model: {} error, must specify an existed YAML file"
.
format
(
args
.
model
))
if
args
.
engine
.
upper
()
not
in
clusters
:
raise
ValueError
(
"argument engine: {} error, must in {}"
.
format
(
args
.
engine
,
clusters
))
if
args
.
engine_extras
is
not
None
:
if
not
os
.
path
.
exists
(
args
.
engine_extras
)
or
not
os
.
path
.
isfile
(
args
.
engine_extras
):
raise
ValueError
(
"argument engine_extras: {} error, must specify an existed YAML file"
.
format
(
args
.
engine_extras
))
which_engine
=
get_engine
(
args
.
engine
)
engine
=
which_engine
(
args
)
engine
.
run
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录