criteo_reader.py 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

15 16
from __future__ import print_function
import math
T
tangwei 已提交
17
import os
18 19 20 21 22

try:
    import cPickle as pickle
except ImportError:
    import pickle
T
tangwei 已提交
23 24 25 26

from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

class TrainReader(Reader):
    def init(self):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 11,
            231, 4008, 7393
        ]
        self.cont_diff_ = [
            self.cont_max_[i] - self.cont_min_[i]
            for i in range(len(self.cont_min_))
        ]
        self.cont_idx_ = list(range(1, 14))
        self.cat_idx_ = list(range(14, 40))

        dense_feat_names = ['I' + str(i) for i in range(1, 14)]
        sparse_feat_names = ['C' + str(i) for i in range(1, 27)]
        target = ['label']

        self.label_feat_names = target + dense_feat_names + sparse_feat_names

        self.cat_feat_idx_dict_list = [{} for _ in range(26)]
T
for mat  
tangwei 已提交
49

50 51 52 53 54 55 56
        # TODO: set vocabulary dictionary
        vocab_dir = envs.get_global_env("feat_dict_name", None, "train.reader")
        for i in range(26):
            lookup_idx = 1  # remain 0 for default value
            for line in open(
                    os.path.join(vocab_dir, 'C' + str(i + 1) + '.txt')):
                self.cat_feat_idx_dict_list[i][line.strip()] = lookup_idx
T
for mat  
tangwei 已提交
57
                lookup_idx += 1
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

    def _process_line(self, line):
        features = line.rstrip('\n').split('\t')
        label_feat_list = [[] for _ in range(40)]
        for idx in self.cont_idx_:
            if features[idx] == '':
                label_feat_list[idx].append(0)
            else:
                # 0-1 minmax norm
                # label_feat_list[idx].append((float(features[idx]) - self.cont_min_[idx - 1]) /
                #                             self.cont_diff_[idx - 1])
                # log transform
                label_feat_list[idx].append(
                    math.log(4 + float(features[idx]))
                    if idx == 2 else math.log(1 + float(features[idx])))
        for idx in self.cat_idx_:
            if features[idx] == '' or features[
T
for mat  
tangwei 已提交
75
                idx] not in self.cat_feat_idx_dict_list[idx - 14]:
76 77 78
                label_feat_list[idx].append(0)
            else:
                label_feat_list[idx].append(self.cat_feat_idx_dict_list[
T
for mat  
tangwei 已提交
79
                                                idx - 14][features[idx]])
80 81
        label_feat_list[0].append(int(features[0]))
        return label_feat_list
T
for mat  
tangwei 已提交
82

83 84 85 86
    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """
T
for mat  
tangwei 已提交
87

88 89 90 91
        def data_iter():
            label_feat_list = self._process_line(line)
            yield list(zip(self.label_feat_names, label_feat_list))

T
for mat  
tangwei 已提交
92
        return data_iter