criteo_reader.py 3.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

15 16
from __future__ import print_function
import math
T
tangwei 已提交
17
import os
18 19 20 21 22

try:
    import cPickle as pickle
except ImportError:
    import pickle
T
tangwei 已提交
23 24 25 26 27


from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

class TrainReader(Reader):
    def init(self):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 11,
            231, 4008, 7393
        ]
        self.cont_diff_ = [
            self.cont_max_[i] - self.cont_min_[i]
            for i in range(len(self.cont_min_))
        ]
        self.cont_idx_ = list(range(1, 14))
        self.cat_idx_ = list(range(14, 40))

        dense_feat_names = ['I' + str(i) for i in range(1, 14)]
        sparse_feat_names = ['C' + str(i) for i in range(1, 27)]
        target = ['label']

        self.label_feat_names = target + dense_feat_names + sparse_feat_names

        self.cat_feat_idx_dict_list = [{} for _ in range(26)]
        
        # TODO: set vocabulary dictionary
        vocab_dir = envs.get_global_env("feat_dict_name", None, "train.reader")
        for i in range(26):
            lookup_idx = 1  # remain 0 for default value
            for line in open(
                    os.path.join(vocab_dir, 'C' + str(i + 1) + '.txt')):
                self.cat_feat_idx_dict_list[i][line.strip()] = lookup_idx
                lookup_idx += 1 

    def _process_line(self, line):
        features = line.rstrip('\n').split('\t')
        label_feat_list = [[] for _ in range(40)]
        for idx in self.cont_idx_:
            if features[idx] == '':
                label_feat_list[idx].append(0)
            else:
                # 0-1 minmax norm
                # label_feat_list[idx].append((float(features[idx]) - self.cont_min_[idx - 1]) /
                #                             self.cont_diff_[idx - 1])
                # log transform
                label_feat_list[idx].append(
                    math.log(4 + float(features[idx]))
                    if idx == 2 else math.log(1 + float(features[idx])))
        for idx in self.cat_idx_:
            if features[idx] == '' or features[
                    idx] not in self.cat_feat_idx_dict_list[idx - 14]:
                label_feat_list[idx].append(0)
            else:
                label_feat_list[idx].append(self.cat_feat_idx_dict_list[
                    idx - 14][features[idx]])
        label_feat_list[0].append(int(features[0]))
        return label_feat_list
    
    def generate_sample(self, line):
        """
        Read the data line by line and process it as a dictionary
        """
        def data_iter():
            label_feat_list = self._process_line(line)
            yield list(zip(self.label_feat_names, label_feat_list))

        return data_iter