model.py 11.3 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle.fluid.layers.tensor as tensor
import paddle.fluid.layers.control_flow as cf

19 20
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
M
malin10 已提交
21

T
for mat  
tangwei 已提交
22

M
malin10 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
class BowEncoder(object):
    """ bow-encoder """

    def __init__(self):
        self.param_name = ""

    def forward(self, emb):
        return fluid.layers.sequence_pool(input=emb, pool_type='sum')


class CNNEncoder(object):
    """ cnn-encoder"""

    def __init__(self,
                 param_name="cnn",
                 win_size=3,
                 ksize=128,
                 act='tanh',
                 pool_type='max'):
        self.param_name = param_name
        self.win_size = win_size
        self.ksize = ksize
        self.act = act
        self.pool_type = pool_type

    def forward(self, emb):
        return fluid.nets.sequence_conv_pool(
            input=emb,
            num_filters=self.ksize,
            filter_size=self.win_size,
            act=self.act,
            pool_type=self.pool_type,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")


class GrnnEncoder(object):
    """ grnn-encoder """

    def __init__(self, param_name="grnn", hidden_size=128):
        self.param_name = param_name
        self.hidden_size = hidden_size

    def forward(self, emb):
        fc0 = fluid.layers.fc(input=emb,
                              size=self.hidden_size * 3,
                              param_attr=self.param_name + "_fc.w",
                              bias_attr=False)

        gru_h = fluid.layers.dynamic_gru(
            input=fc0,
            size=self.hidden_size,
            is_reverse=False,
            param_attr=self.param_name + ".param",
            bias_attr=self.param_name + ".bias")
        return fluid.layers.sequence_pool(input=gru_h, pool_type='max')


class SimpleEncoderFactory(object):
    def __init__(self):
        pass

    ''' create an encoder through create function '''

    def create(self, enc_type, enc_hid_size):
        if enc_type == "bow":
            bow_encode = BowEncoder()
            return bow_encode
        elif enc_type == "cnn":
            cnn_encode = CNNEncoder(ksize=enc_hid_size)
            return cnn_encode
        elif enc_type == "gru":
            rnn_encode = GrnnEncoder(hidden_size=enc_hid_size)
            return rnn_encode

T
for mat  
tangwei 已提交
98

M
malin10 已提交
99 100 101 102
class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)
        self.init_config()
T
for mat  
tangwei 已提交
103

M
malin10 已提交
104
    def init_config(self):
T
for mat  
tangwei 已提交
105
        self._fetch_interval = 1
T
tangwei 已提交
106 107 108 109 110 111 112 113 114 115 116 117
        query_encoder = envs.get_global_env("hyper_parameters.query_encoder",
                                            None, self._namespace)
        title_encoder = envs.get_global_env("hyper_parameters.title_encoder",
                                            None, self._namespace)
        query_encode_dim = envs.get_global_env(
            "hyper_parameters.query_encode_dim", None, self._namespace)
        title_encode_dim = envs.get_global_env(
            "hyper_parameters.title_encode_dim", None, self._namespace)
        query_slots = envs.get_global_env("hyper_parameters.query_slots", None,
                                          self._namespace)
        title_slots = envs.get_global_env("hyper_parameters.title_slots", None,
                                          self._namespace)
M
malin10 已提交
118 119 120 121 122
        factory = SimpleEncoderFactory()
        self.query_encoders = [
            factory.create(query_encoder, query_encode_dim)
            for i in range(query_slots)
        ]
T
for mat  
tangwei 已提交
123
        self.title_encoders = [
M
malin10 已提交
124 125 126 127
            factory.create(title_encoder, title_encode_dim)
            for i in range(title_slots)
        ]

T
tangwei 已提交
128 129 130 131
        self.emb_size = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim", None, self._namespace)
        self.emb_dim = envs.get_global_env("hyper_parameters.embedding_dim",
                                           None, self._namespace)
T
for mat  
tangwei 已提交
132
        self.emb_shape = [self.emb_size, self.emb_dim]
T
tangwei 已提交
133 134
        self.hidden_size = envs.get_global_env("hyper_parameters.hidden_size",
                                               None, self._namespace)
T
for mat  
tangwei 已提交
135
        self.margin = 0.1
M
malin10 已提交
136 137

    def input(self, is_train=True):
T
for mat  
tangwei 已提交
138
        self.q_slots = [
M
malin10 已提交
139
            fluid.data(
M
debug  
malin10 已提交
140
                name="%d" % i, shape=[None, 1], lod_level=1, dtype='int64')
M
malin10 已提交
141 142 143 144
            for i in range(len(self.query_encoders))
        ]
        self.pt_slots = [
            fluid.data(
T
tangwei 已提交
145 146 147 148
                name="%d" % (i + len(self.query_encoders)),
                shape=[None, 1],
                lod_level=1,
                dtype='int64') for i in range(len(self.title_encoders))
M
malin10 已提交
149 150
        ]

T
for mat  
tangwei 已提交
151 152
        if is_train == False:
            return self.q_slots + self.pt_slots
M
malin10 已提交
153 154 155

        self.nt_slots = [
            fluid.data(
T
tangwei 已提交
156 157 158 159 160
                name="%d" %
                (i + len(self.query_encoders) + len(self.title_encoders)),
                shape=[None, 1],
                lod_level=1,
                dtype='int64') for i in range(len(self.title_encoders))
M
malin10 已提交
161 162 163
        ]

        return self.q_slots + self.pt_slots + self.nt_slots
T
for mat  
tangwei 已提交
164

M
malin10 已提交
165 166 167 168
    def train_input(self):
        res = self.input()
        self._data_var = res

T
tangwei 已提交
169 170
        use_dataloader = envs.get_global_env("hyper_parameters.use_DataLoader",
                                             False, self._namespace)
M
malin10 已提交
171 172 173

        if self._platform != "LINUX" or use_dataloader:
            self._data_loader = fluid.io.DataLoader.from_generator(
T
tangwei 已提交
174 175 176 177
                feed_list=self._data_var,
                capacity=256,
                use_double_buffer=False,
                iterable=False)
M
malin10 已提交
178 179 180

    def get_acc(self, x, y):
        less = tensor.cast(cf.less_than(x, y), dtype='float32')
T
for mat  
tangwei 已提交
181
        label_ones = fluid.layers.fill_constant_batch_size_like(
M
malin10 已提交
182 183
            input=x, dtype='float32', shape=[-1, 1], value=1.0)
        correct = fluid.layers.reduce_sum(less)
T
for mat  
tangwei 已提交
184
        total = fluid.layers.reduce_sum(label_ones)
M
malin10 已提交
185
        acc = fluid.layers.elementwise_div(correct, total)
T
for mat  
tangwei 已提交
186
        return acc
M
malin10 已提交
187 188

    def net(self):
T
for mat  
tangwei 已提交
189
        q_embs = [
M
malin10 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
            fluid.embedding(
                input=query, size=self.emb_shape, param_attr="emb")
            for query in self.q_slots
        ]
        pt_embs = [
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.pt_slots
        ]
        nt_embs = [
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.nt_slots
        ]
T
for mat  
tangwei 已提交
204 205

        # encode each embedding field with encoder
M
malin10 已提交
206 207 208 209
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
        pt_encodes = [
T
tangwei 已提交
210 211
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(pt_embs)
M
malin10 已提交
212 213
        ]
        nt_encodes = [
T
tangwei 已提交
214 215
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(nt_embs)
M
malin10 已提交
216 217 218 219 220 221 222
        ]

        # concat multi view for query, pos_title, neg_title
        q_concat = fluid.layers.concat(q_encodes)
        pt_concat = fluid.layers.concat(pt_encodes)
        nt_concat = fluid.layers.concat(nt_encodes)

T
for mat  
tangwei 已提交
223
        # projection of hidden layer
M
malin10 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        q_hid = fluid.layers.fc(q_concat,
                                size=self.hidden_size,
                                param_attr='q_fc.w',
                                bias_attr='q_fc.b')
        pt_hid = fluid.layers.fc(pt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')
        nt_hid = fluid.layers.fc(nt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')

        # cosine of hidden layers
        cos_pos = fluid.layers.cos_sim(q_hid, pt_hid)
        cos_neg = fluid.layers.cos_sim(q_hid, nt_hid)

T
for mat  
tangwei 已提交
241
        # pairwise hinge_loss
M
malin10 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        loss_part1 = fluid.layers.elementwise_sub(
            tensor.fill_constant_batch_size_like(
                input=cos_pos,
                shape=[-1, 1],
                value=self.margin,
                dtype='float32'),
            cos_pos)

        loss_part2 = fluid.layers.elementwise_add(loss_part1, cos_neg)

        loss_part3 = fluid.layers.elementwise_max(
            tensor.fill_constant_batch_size_like(
                input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'),
            loss_part2)

        self.avg_cost = fluid.layers.mean(loss_part3)
T
for mat  
tangwei 已提交
258
        self.acc = self.get_acc(cos_neg, cos_pos)
M
malin10 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

    def avg_loss(self):
        self._cost = self.avg_cost

    def metrics(self):
        self._metrics["loss"] = self.avg_cost
        self._metrics["acc"] = self.acc

    def train_net(self):
        self.train_input()
        self.net()
        self.avg_loss()
        self.metrics()

    def optimizer(self):
T
tangwei 已提交
274 275
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate",
                                            None, self._namespace)
T
for mat  
tangwei 已提交
276 277
        optimizer = fluid.optimizer.Adam(learning_rate=learning_rate)
        return optimizer
M
malin10 已提交
278 279 280

    def infer_input(self):
        res = self.input(is_train=False)
T
for mat  
tangwei 已提交
281
        self._infer_data_var = res
M
malin10 已提交
282 283

        self._infer_data_loader = fluid.io.DataLoader.from_generator(
T
tangwei 已提交
284 285 286 287
            feed_list=self._infer_data_var,
            capacity=64,
            use_double_buffer=False,
            iterable=False)
T
for mat  
tangwei 已提交
288

M
malin10 已提交
289
    def infer_net(self):
T
for mat  
tangwei 已提交
290 291
        self.infer_input()
        # lookup embedding for each slot
M
malin10 已提交
292 293 294 295 296 297 298 299 300 301
        q_embs = [
            fluid.embedding(
                input=query, size=self.emb_shape, param_attr="emb")
            for query in self.q_slots
        ]
        pt_embs = [
            fluid.embedding(
                input=title, size=self.emb_shape, param_attr="emb")
            for title in self.pt_slots
        ]
T
for mat  
tangwei 已提交
302
        # encode each embedding field with encoder
M
malin10 已提交
303 304 305 306
        q_encodes = [
            self.query_encoders[i].forward(emb) for i, emb in enumerate(q_embs)
        ]
        pt_encodes = [
T
tangwei 已提交
307 308
            self.title_encoders[i].forward(emb)
            for i, emb in enumerate(pt_embs)
M
malin10 已提交
309
        ]
T
for mat  
tangwei 已提交
310
        # concat multi view for query, pos_title, neg_title
M
malin10 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        q_concat = fluid.layers.concat(q_encodes)
        pt_concat = fluid.layers.concat(pt_encodes)
        # projection of hidden layer
        q_hid = fluid.layers.fc(q_concat,
                                size=self.hidden_size,
                                param_attr='q_fc.w',
                                bias_attr='q_fc.b')
        pt_hid = fluid.layers.fc(pt_concat,
                                 size=self.hidden_size,
                                 param_attr='t_fc.w',
                                 bias_attr='t_fc.b')

        # cosine of hidden layers
        cos = fluid.layers.cos_sim(q_hid, pt_hid)
        self._infer_results['query_pt_sim'] = cos