Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
c30368ea
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c30368ea
编写于
5月 09, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
debug
上级
fd7df95f
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
31 addition
and
31 deletion
+31
-31
models/recall/multiview-simnet/data/test/test.txt
models/recall/multiview-simnet/data/test/test.txt
+10
-10
models/recall/multiview-simnet/data/train/train.txt
models/recall/multiview-simnet/data/train/train.txt
+10
-10
models/recall/multiview-simnet/evaluate_reader.py
models/recall/multiview-simnet/evaluate_reader.py
+2
-2
models/recall/multiview-simnet/generate_synthetic_data.py
models/recall/multiview-simnet/generate_synthetic_data.py
+3
-3
models/recall/multiview-simnet/model.py
models/recall/multiview-simnet/model.py
+3
-3
models/recall/multiview-simnet/reader.py
models/recall/multiview-simnet/reader.py
+3
-3
未找到文件。
models/recall/multiview-simnet/data/test/test.txt
浏览文件 @
c30368ea
55845:q0 48327:q0 35594:q0 45144:q0 24234:q0 30304:q0 49505:q0 81291:q0 41458:q0 14444:q0 48595:pt0 33252:pt0 80121:pt0 48187:pt0 19290:pt0 86838:pt0 12952:pt0 22651:pt0 40981:pt0 93151:pt0
24310:q0 95198:q0 63888:q0 97388:q0 35618:q0 60812:q0 15200:q0 56153:q0 40836:q0 20601:q0 61771:pt0 91433:pt0 23561:pt0 5193:pt0 7638:pt0 83280:pt0 40560:pt0 3866:pt0 46393:pt0 23540:pt0
27457:q0 11157:q0 67566:q0 79598:q0 43460:q0 23949:q0 8785:q0 32809:q0 11198:q0 85918:q0 8067:pt0 30818:pt0 7356:pt0 38800:pt0 10263:pt0 71683:pt0 2327:pt0 18645:pt0 3697:pt0 59405:pt0
67244:q0 11147:q0 32445:q0 50824:q0 23953:q0 69579:q0 61298:q0 29212:q0 4404:q0 20147:q0 91983:pt0 14086:pt0 62007:pt0 48478:pt0 21500:pt0 48079:pt0 25472:pt0 80782:pt0 196:pt0 25996:pt0
2
3980:q0 28095:q0 76849:q0 4840:q0 13727:q0 6899:q0 14224:q0 29154:q0 67655:q0 19190:q0 55244:pt0 78364:pt0 6822:pt0 9469:pt0 88192:pt0 20879:pt0 46695:pt0 77738:pt0 56719:pt0 34339:pt0
21762:q0 45574:q0 14707:q0 91857:q0 498:q0 69851:q0 44184:q0 88230:q0 68280:q0 63441:q0 29662:pt0 67343:pt0 17316:pt0 67547:pt0 20075:pt0 42813:pt0 48618:pt0 71078:pt0 64804:pt0 71161:pt0
26983:q0 15077:q0 78400:q0 20527:q0 5551:q0 53694:q0 25733:q0 22458:q0 51732:q0 55983:q0 27832:pt0 25228:pt0 88149:pt0 42938:pt0 1728:pt0 31127:pt0 43884:pt0 88393:pt0 31921:pt0 6008:pt0
10009:q0 81206:q0 67854:q0 44704:q0 71528:q0 33799:q0 11805:q0 19961:q0 42334:q0 47131:q0 81425:pt0 18282:pt0 75162:pt0 85100:pt0 66930:pt0 58086:pt0 14809:pt0 71246:pt0 16668:pt0 40496:pt0
10494:q0 17795:q0 9906:q0 76400:q0 23409:q0 52849:q0 37389:q0 32100:q0 99920:q0 48401:q0 35078:pt0 34381:pt0 17627:pt0 96420:pt0 51059:pt0 1526:pt0 70144:pt0 76407:pt0 49928:pt0 66158:pt0
6
1679:q0 16128:q0 14316:q0 99879:q0 98866:q0 26097:q0 94332:q0 85755:q0 86293:q0 77971:q0 78059:pt0 58096:pt0 18534:pt0 22886:pt0 39979:pt0 50215:pt0 49305:pt0 83042:pt0 21844:pt0 20832:pt0
224289:0 126379:0 284519:0 549329:0 750666:0 393772:0 586898:0 736887:0 48785:0 906517:0 229162:1 483485:1 739835:1 29957:1 694497:1 997508:1 556876:1 717791:1 232176:1 430356:1
366182:0 82062:0 708883:0 949128:0 798964:0 639103:0 409033:0 79301:0 405607:0 342616:0 61552:1 560547:1 3760:1 754734:1 98496:1 472427:1 979596:1 750283:1 492028:1 801383:1
969571:0 405187:0 756217:0 563640:0 572168:0 881952:0 446260:0 692177:0 994140:0 485393:0 509081:1 297377:1 465399:1 934708:1 430949:1 135651:1 484531:1 385306:1 463957:1 996004:1
436320:0 423131:0 963969:0 78345:0 879550:0 458203:0 684397:0 956202:0 989802:0 526101:0 852446:1 182545:1 625656:1 674856:1 422648:1 74100:1 48372:1 850830:1 336087:1 178251:1
2
42683:0 118677:0 20731:0 970617:0 355890:0 739613:0 926695:0 963639:0 201043:0 611907:0 115309:1 310984:1 615584:1 638886:1 575934:1 889389:1 974807:1 570987:1 532482:1 911925:1
954007:0 122623:0 168195:0 348901:0 217880:0 84759:0 925763:0 436382:0 573742:0 942921:0 553377:1 835046:1 137907:1 933870:1 766585:1 48483:1 543079:1 889467:1 521705:1 906676:1
798690:0 617323:0 553266:0 232924:0 159461:0 404822:0 52992:0 364854:0 913876:0 547974:0 559472:1 748595:1 71793:1 357331:1 606888:1 477051:1 291481:1 89363:1 503881:1 423029:1
228207:0 785250:0 661149:0 803304:0 478781:0 495202:0 804509:0 273065:0 26123:0 810840:0 801871:1 146772:1 421009:1 752344:1 946358:1 531668:1 5771:1 191294:1 627329:1 434664:1
984628:0 762075:0 505288:0 48519:0 72492:0 26568:0 684085:0 613095:0 781547:0 895829:0 280541:1 903234:1 708065:1 386658:1 331060:1 3693:1 279760:1 459579:1 423552:1 962594:1
6
74172:0 39271:0 646093:0 757969:0 553251:0 734960:0 967186:0 856940:0 617246:0 376452:0 113050:1 472707:1 975057:1 865095:1 155824:1 389921:1 205520:1 513667:1 163588:1 953463:1
models/recall/multiview-simnet/data/train/train.txt
浏览文件 @
c30368ea
25212:q0 41019:q0 15221:q0 26969:q0 36669:q0 15986:q0 91749:q0 30848:q0 65210:q0 36795:q0 51801:pt0 148:pt0 64025:pt0 91107:pt0 45193:pt0 15358:pt0 37016:pt0 98657:pt0 8768:pt0 50232:pt0 1313:nt0 86725:nt0 98273:nt0 46754:nt0 53202:nt0 73359:nt0 57339:nt0 97310:nt0 95286:nt0 42304:nt0
91803:q0 22382:q0 95998:q0 79155:q0 62328:q0 36070:q0 46321:q0 49510:q0 95638:q0 57873:q0 37491:pt0 41388:pt0 41649:pt0 84972:pt0 85092:pt0 19921:pt0 53701:pt0 70145:pt0 53337:pt0 97445:pt0 52620:nt0 79645:nt0 9555:nt0 35554:nt0 60410:nt0 69824:nt0 1487:nt0 61492:nt0 57026:nt0 42018:nt0
8247:q0 70601:q0 70209:q0 27625:q0 2652:q0 44564:q0 79847:q0 75873:q0 43830:q0 25367:q0 9294:pt0 11471:pt0 56945:pt0 17886:pt0 39367:pt0 21254:pt0 59394:pt0 8827:pt0 22590:pt0 46047:pt0 66963:nt0 25474:nt0 38485:nt0 732:nt0 96098:nt0 78423:nt0 29482:nt0 63866:nt0 76600:nt0 62664:nt0
14162:q0 60298:q0 83441:q0 90760:q0 88224:q0 70442:q0 37425:q0 50530:q0 50017:q0 50288:q0 36582:pt0 87172:pt0 7095:pt0 89474:pt0 90924:pt0 58990:pt0 88493:pt0 67453:pt0 78688:pt0 42423:pt0 53442:nt0 59360:nt0 445:nt0 63133:nt0 57171:nt0 8207:nt0 8781:nt0 61454:nt0 59407:nt0 5189:nt0
95981:q0 11454:q0 73927:q0 78505:q0 25738:q0 77610:q0 34547:q0 83948:q0 87500:q0 71928:q0 38269:pt0 75996:pt0 64291:pt0 215:pt0 32570:pt0 13733:pt0 15304:pt0 67986:pt0 2283:pt0 7896:pt0 53977:nt0 63572:nt0 98439:nt0 57037:nt0 60009:nt0 92660:nt0 413:nt0 10434:nt0 13035:nt0 33110:nt0
56719:q0 31980:q0 80014:q0 10699:q0 59425:q0 53792:q0 3984:q0 25257:q0 17241:q0 82107:q0 71965:pt0 53900:pt0 84616:pt0 97909:pt0 11625:pt0 80883:pt0 40321:pt0 89692:pt0 64363:pt0 70647:pt0 5444:nt0 415:nt0 21854:nt0 94962:nt0 12220:nt0 50927:nt0 13578:nt0 52078:nt0 32889:nt0 94443:nt0
45603:q0 34278:q0 29984:q0 14052:q0 44562:q0 13997:q0 87924:q0 61856:q0 5458:q0 48804:q0 42902:pt0 28880:pt0 68089:pt0 74598:pt0 33197:pt0 76521:pt0 44762:pt0 58170:pt0 14177:pt0 21283:pt0 64523:nt0 66038:nt0 34411:nt0 88249:nt0 42915:nt0 9998:nt0 65033:nt0 70132:nt0 63762:nt0 7497:nt0
11740:q0 84220:q0 43427:q0 59656:q0 25221:q0 89764:q0 52901:q0 81268:q0 76015:q0 52799:q0 93405:pt0 32788:pt0 36498:pt0 37733:pt0 12795:pt0 55438:pt0 60294:pt0 56537:pt0 35317:pt0 25310:pt0 1499:nt0 1305:nt0 48984:nt0 57311:nt0 55083:nt0 8319:nt0 53953:nt0 83839:nt0 89471:nt0 78813:nt0
7045:q0 31725:q0 40138:q0 84358:q0 16071:q0 32227:q0 17767:q0 26566:q0 98709:q0 71006:q0 67541:pt0 92703:pt0 32306:pt0 60506:pt0 75276:pt0 35969:pt0 41749:pt0 23469:pt0 28621:pt0 35213:pt0 82816:nt0 55050:nt0 85484:nt0 76618:nt0 46177:nt0 54583:nt0 9357:nt0 87694:nt0 78601:nt0 88601:nt0
72413:q0 46396:q0 7065:q0 91955:q0 59212:q0 48775:q0 66636:q0 394:q0 82077:q0 18533:q0 58905:pt0 40190:pt0 52536:pt0 20779:pt0 76068:pt0 70402:pt0 52102:pt0 3167:pt0 72461:pt0 29606:pt0 89297:nt0 33717:nt0 78957:nt0 42046:nt0 16408:nt0 80806:nt0 19095:nt0 81176:nt0 16634:nt0 72387:nt0
7688:0 589671:0 339543:0 681723:0 339204:0 743067:0 897959:0 897541:0 571340:0 858141:0 68161:1 533957:1 288065:1 755516:1 179906:1 324817:1 116293:1 942079:1 455277:1 787142:1 251765:2 846187:2 586960:2 781883:2 430436:2 240100:2 686201:2 632045:2 585097:2 61976:2
187966:0 194147:0 640819:0 283848:0 514875:0 310781:0 760083:0 281096:0 837090:0 928087:0 958908:1 451359:1 456136:1 577231:1 373371:1 651928:1 877106:1 721988:1 342265:1 114942:1 668915:2 502190:2 139044:2 213045:2 36710:2 119509:2 450285:2 165440:2 199495:2 798870:2
477955:0 598041:0 452166:0 924550:0 152308:0 316225:0 285239:0 7967:0 177143:0 132244:0 391070:1 169561:1 256279:1 563588:1 749753:1 237035:1 550804:1 736257:1 71551:1 61944:1 102132:2 484023:2 82995:2 732704:2 114816:2 413165:2 197504:2 686192:2 253734:2 248157:2
325819:0 140241:0 365103:0 334185:0 357327:0 613836:0 928004:0 595589:0 506569:0 539067:0 638196:1 729129:1 730912:1 701797:1 571150:1 140054:1 680316:1 889784:1 302584:1 676284:1 671069:2 212989:2 318469:2 732930:2 924564:2 147041:2 572412:2 662673:2 418312:2 382855:2
839803:0 888881:0 957998:0 906486:0 44377:0 247842:0 994783:0 813449:0 168271:0 493685:0 269703:1 156692:1 686681:1 273684:1 312387:1 462033:1 669631:1 635437:1 74337:1 217677:1 582194:2 992666:2 860610:2 660766:2 24524:2 169856:2 882211:2 291866:2 44494:2 984736:2
327559:0 627497:0 876526:0 243959:0 532929:0 639919:0 443220:0 952110:0 844723:0 372053:0 196819:1 326005:1 62242:1 774928:1 382727:1 348680:1 946697:1 625998:1 276517:1 251595:1 342204:2 825871:2 407136:2 724114:2 611341:2 517978:2 248341:2 111254:2 836867:2 677297:2
72451:0 749548:0 283413:0 419402:0 67446:0 341795:0 918120:0 892028:0 113151:0 832663:0 758121:1 500602:1 734935:1 577972:1 205421:1 726739:1 276563:1 611928:1 185486:1 603502:1 633117:2 929300:2 332435:2 216848:2 412769:2 708304:2 800045:2 315869:2 444476:2 332565:2
675647:0 212558:0 654982:0 321053:0 111172:0 635432:0 298523:0 612182:0 203835:0 288250:0 990034:1 891786:1 188524:1 480757:1 436783:1 874434:1 530090:1 492441:1 32835:1 886415:1 688876:2 626030:2 612348:2 208265:2 355885:2 603938:2 349931:2 86683:2 361956:2 705130:2
164500:0 332294:0 373155:0 320413:0 801561:0 152827:0 28282:0 435913:0 376758:0 367848:0 285596:1 282674:1 357323:1 257195:1 948061:1 996976:1 300918:1 734644:1 870559:1 924205:1 45095:2 61352:2 242258:2 153354:2 763576:2 133542:2 431079:2 193327:2 655823:2 770159:2
821764:0 184731:0 888413:0 793536:0 30049:0 533675:0 791254:0 92255:0 74185:0 557758:0 795898:1 15689:1 983592:1 248891:1 64421:1 387642:1 315522:1 526054:1 404172:1 704838:1 537016:2 383828:2 438418:2 885895:2 894698:2 228867:2 343213:2 411377:2 149957:2 810795:2
models/recall/multiview-simnet/evaluate_reader.py
浏览文件 @
c30368ea
...
...
@@ -26,10 +26,10 @@ class EvaluateReader(Reader):
self
.
all_slots
=
[]
for
i
in
range
(
self
.
query_slots
):
self
.
all_slots
.
append
(
'q'
+
str
(
i
))
self
.
all_slots
.
append
(
str
(
i
))
for
i
in
range
(
self
.
title_slots
):
self
.
all_slots
.
append
(
'pt'
+
str
(
i
))
self
.
all_slots
.
append
(
str
(
i
+
self
.
query_slots
))
self
.
_all_slots_dict
=
dict
()
for
index
,
slot
in
enumerate
(
self
.
all_slots
):
...
...
models/recall/multiview-simnet/generate_synthetic_data.py
浏览文件 @
c30368ea
...
...
@@ -39,18 +39,18 @@ class SyntheticDataset(Dataset):
for
i
in
range
(
self
.
query_slot_num
):
qslot
=
generate_ids
(
self
.
ids_per_slot
,
self
.
sparse_feature_dim
)
qslot
=
[
str
(
fea
)
+
':
q
'
+
str
(
i
)
for
fea
in
qslot
]
qslot
=
[
str
(
fea
)
+
':'
+
str
(
i
)
for
fea
in
qslot
]
query_slots
+=
qslot
for
i
in
range
(
self
.
title_slot_num
):
pt_slot
=
generate_ids
(
self
.
ids_per_slot
,
self
.
sparse_feature_dim
)
pt_slot
=
[
str
(
fea
)
+
':
pt'
+
str
(
i
)
for
fea
in
pt_slot
]
pt_slot
=
[
str
(
fea
)
+
':
'
+
str
(
i
+
self
.
query_slot_num
)
for
fea
in
pt_slot
]
pos_title_slots
+=
pt_slot
if
is_train
:
for
i
in
range
(
self
.
title_slot_num
):
nt_slot
=
generate_ids
(
self
.
ids_per_slot
,
self
.
sparse_feature_dim
)
nt_slot
=
[
str
(
fea
)
+
':
nt'
+
str
(
i
)
for
fea
in
nt_slot
]
nt_slot
=
[
str
(
fea
)
+
':
'
+
str
(
i
+
self
.
query_slot_num
+
self
.
title_slot_num
)
for
fea
in
nt_slot
]
neg_title_slots
+=
nt_slot
yield
query_slots
+
pos_title_slots
+
neg_title_slots
else
:
...
...
models/recall/multiview-simnet/model.py
浏览文件 @
c30368ea
...
...
@@ -129,12 +129,12 @@ class Model(ModelBase):
def
input
(
self
,
is_train
=
True
):
self
.
q_slots
=
[
fluid
.
data
(
name
=
"
q
%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
name
=
"%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
query_encoders
))
]
self
.
pt_slots
=
[
fluid
.
data
(
name
=
"
pt%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
name
=
"
%d"
%
(
i
+
len
(
self
.
query_encoders
))
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
]
...
...
@@ -143,7 +143,7 @@ class Model(ModelBase):
self
.
nt_slots
=
[
fluid
.
data
(
name
=
"
nt%d"
%
i
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
name
=
"
%d"
%
(
i
+
len
(
self
.
query_encoders
)
+
len
(
self
.
title_encoders
))
,
shape
=
[
None
,
1
],
lod_level
=
1
,
dtype
=
'int64'
)
for
i
in
range
(
len
(
self
.
title_encoders
))
]
...
...
models/recall/multiview-simnet/reader.py
浏览文件 @
c30368ea
...
...
@@ -26,13 +26,13 @@ class TrainReader(Reader):
self
.
all_slots
=
[]
for
i
in
range
(
self
.
query_slots
):
self
.
all_slots
.
append
(
'q'
+
str
(
i
))
self
.
all_slots
.
append
(
str
(
i
))
for
i
in
range
(
self
.
title_slots
):
self
.
all_slots
.
append
(
'pt'
+
str
(
i
))
self
.
all_slots
.
append
(
str
(
i
+
self
.
query_slots
))
for
i
in
range
(
self
.
title_slots
):
self
.
all_slots
.
append
(
'nt'
+
str
(
i
))
self
.
all_slots
.
append
(
str
(
i
+
self
.
query_slots
+
self
.
title_slots
))
self
.
_all_slots_dict
=
dict
()
for
index
,
slot
in
enumerate
(
self
.
all_slots
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录