precision_recall.py 5.6 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math

import numpy as np
import paddle.fluid as fluid

from paddlerec.core.metric import Metric
from paddle.fluid.initializer import Constant
from paddle.fluid.layer_helper import LayerHelper
M
malin10 已提交
23
from paddle.fluid.layers.tensor import Variable
M
malin10 已提交
24 25 26 27 28 29 30


class PrecisionRecall(Metric):
    """
    Metric For Fluid Model
    """

M
doc  
malin10 已提交
31
    def __init__(self, input, label, class_num):
M
bug fix  
malin10 已提交
32 33
        """R
        """
M
doc  
malin10 已提交
34 35
        kwargs = locals()
        del kwargs['self']
M
malin10 已提交
36

M
doc  
malin10 已提交
37 38 39
        self.num_cls = class_num

        if not isinstance(input, Variable):
M
malin10 已提交
40
            raise ValueError("input must be Variable, but received %s" %
M
doc  
malin10 已提交
41
                             type(input))
M
malin10 已提交
42 43 44 45 46 47 48
        if not isinstance(label, Variable):
            raise ValueError("label must be Variable, but received %s" %
                             type(label))

        helper = LayerHelper("PaddleRec_PrecisionRecall", **kwargs)
        label = fluid.layers.cast(label, dtype="int32")
        label.stop_gradient = True
M
doc  
malin10 已提交
49
        max_probs, indices = fluid.layers.nn.topk(input, k=1)
M
malin10 已提交
50 51 52 53 54 55 56
        indices = fluid.layers.cast(indices, dtype="int32")
        indices.stop_gradient = True

        states_info, _ = helper.create_or_get_global_variable(
            name="states_info",
            persistable=True,
            dtype='float32',
M
update  
malin10 已提交
57
            shape=[self.num_cls, 4])
M
malin10 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
        states_info.stop_gradient = True

        helper.set_variable_initializer(
            states_info, Constant(
                value=0.0, force_cpu=True))

        batch_metrics, _ = helper.create_or_get_global_variable(
            name="batch_metrics",
            persistable=False,
            dtype='float32',
            shape=[6])
        accum_metrics, _ = helper.create_or_get_global_variable(
            name="global_metrics",
            persistable=False,
            dtype='float32',
            shape=[6])

        batch_states = fluid.layers.fill_constant(
M
update  
malin10 已提交
76
            shape=[self.num_cls, 4], value=0.0, dtype="float32")
M
malin10 已提交
77 78 79 80
        batch_states.stop_gradient = True

        helper.append_op(
            type="precision_recall",
M
update  
malin10 已提交
81
            attrs={'class_number': self.num_cls},
M
malin10 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
            inputs={
                'MaxProbs': [max_probs],
                'Indices': [indices],
                'Labels': [label],
                'StatesInfo': [states_info]
            },
            outputs={
                'BatchMetrics': [batch_metrics],
                'AccumMetrics': [accum_metrics],
                'AccumStatesInfo': [batch_states]
            })
        helper.append_op(
            type="assign",
            inputs={'X': [batch_states]},
            outputs={'Out': [states_info]})

        batch_states.stop_gradient = True
        states_info.stop_gradient = True

M
malin10 已提交
101 102 103
        self._global_metric_state_vars = dict()
        self._global_metric_state_vars['states_info'] = (states_info.name,
                                                         "float32")
M
malin10 已提交
104 105 106

        self.metrics = dict()
        self.metrics["precision_recall_f1"] = accum_metrics
M
update  
malin10 已提交
107
        self.metrics["[TP FP TN FN]"] = states_info
M
malin10 已提交
108

M
bug fix  
malin10 已提交
109
    def _calculate(self, global_metrics):
M
malin10 已提交
110
        for key in self._global_metric_state_vars:
M
update  
malin10 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
            if key not in global_metrics:
                raise ValueError("%s not existed" % key)

        def calc_precision(tp_count, fp_count):
            if tp_count > 0.0 or fp_count > 0.0:
                return tp_count / (tp_count + fp_count)
            return 1.0

        def calc_recall(tp_count, fn_count):
            if tp_count > 0.0 or fn_count > 0.0:
                return tp_count / (tp_count + fn_count)
            return 1.0

        def calc_f1_score(precision, recall):
            if precision > 0.0 or recall > 0.0:
                return 2 * precision * recall / (precision + recall)
            return 0.0

        states = global_metrics["states_info"]
        total_tp_count = 0.0
        total_fp_count = 0.0
        total_fn_count = 0.0
        macro_avg_precision = 0.0
        macro_avg_recall = 0.0
        for i in range(self.num_cls):
            total_tp_count += states[i][0]
            total_fp_count += states[i][1]
            total_fn_count += states[i][3]
            macro_avg_precision += calc_precision(states[i][0], states[i][1])
            macro_avg_recall += calc_recall(states[i][0], states[i][3])
        metrics = []
        macro_avg_precision /= self.num_cls
        macro_avg_recall /= self.num_cls
        metrics.append(macro_avg_precision)
        metrics.append(macro_avg_recall)
        metrics.append(calc_f1_score(macro_avg_precision, macro_avg_recall))
        micro_avg_precision = calc_precision(total_tp_count, total_fp_count)
        metrics.append(micro_avg_precision)
        micro_avg_recall = calc_recall(total_tp_count, total_fn_count)
        metrics.append(micro_avg_recall)
        metrics.append(calc_f1_score(micro_avg_precision, micro_avg_recall))
        return "total metrics: [TP, FP, TN, FN]=%s; precision_recall_f1=%s" % (
            str(states), str(np.array(metrics).astype('float32')))

M
malin10 已提交
155 156
    def get_result(self):
        return self.metrics