提交 8180c70c 编写于 作者: M malin10

doc

上级 d6d9d9a5
......@@ -14,6 +14,7 @@
from .recall_k import RecallK
from .pairwise_pn import PosNegRatio
from .binary_class import *
from .precision_recall import PrecisionRecall
from .auc import AUC
__all__ = ['RecallK', 'PosNegRatio'] + binary_class.__all__
__all__ = ['RecallK', 'PosNegRatio', 'AUC', 'PrecisionRecall']
......@@ -26,34 +26,31 @@ class AUC(Metric):
Metric For Fluid Model
"""
def __init__(self, **kwargs):
def __init__(self,
input,
label,
curve='ROC',
num_thresholds=2**12 - 1,
topk=1,
slide_steps=1):
""" """
if "input" not in kwargs or "label" not in kwargs:
raise ValueError("AUC expect input and label as inputs.")
predict = kwargs.get("input")
label = kwargs.get("label")
curve = kwargs.get("curve", 'ROC')
num_thresholds = kwargs.get("num_thresholds", 2**12 - 1)
topk = kwargs.get("topk", 1)
slide_steps = kwargs.get("slide_steps", 1)
if not isinstance(predict, Variable):
if not isinstance(input, Variable):
raise ValueError("input must be Variable, but received %s" %
type(predict))
type(input))
if not isinstance(label, Variable):
raise ValueError("label must be Variable, but received %s" %
type(label))
auc_out, batch_auc_out, [
batch_stat_pos, batch_stat_neg, stat_pos, stat_neg
] = fluid.layers.auc(predict,
] = fluid.layers.auc(input,
label,
curve=curve,
num_thresholds=num_thresholds,
topk=topk,
slide_steps=slide_steps)
prob = fluid.layers.slice(predict, axes=[1], starts=[1], ends=[2])
prob = fluid.layers.slice(input, axes=[1], starts=[1], ends=[2])
label_cast = fluid.layers.cast(label, dtype="float32")
label_cast.stop_gradient = True
sqrerr, abserr, prob, q, pos, total = \
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .auc import AUC
from .precision_recall import PrecisionRecall
__all__ = ['PrecisionRecall', 'AUC']
......@@ -28,8 +28,11 @@ class PosNegRatio(Metric):
Metric For Fluid Model
"""
def __init__(self, **kwargs):
def __init__(self, pos_score, neg_score):
""" """
kwargs = locals()
del kwargs['self']
helper = LayerHelper("PaddleRec_PosNegRatio", **kwargs)
if "pos_score" not in kwargs or "neg_score" not in kwargs:
raise ValueError(
......
......@@ -28,19 +28,17 @@ class PrecisionRecall(Metric):
Metric For Fluid Model
"""
def __init__(self, **kwargs):
def __init__(self, input, label, class_num):
"""R
"""
if "input" not in kwargs or "label" not in kwargs or "class_num" not in kwargs:
raise ValueError(
"PrecisionRecall expect input, label and class_num as inputs.")
predict = kwargs.get("input")
label = kwargs.get("label")
self.num_cls = kwargs.get("class_num")
if not isinstance(predict, Variable):
kwargs = locals()
del kwargs['self']
self.num_cls = class_num
if not isinstance(input, Variable):
raise ValueError("input must be Variable, but received %s" %
type(predict))
type(input))
if not isinstance(label, Variable):
raise ValueError("label must be Variable, but received %s" %
type(label))
......@@ -48,7 +46,7 @@ class PrecisionRecall(Metric):
helper = LayerHelper("PaddleRec_PrecisionRecall", **kwargs)
label = fluid.layers.cast(label, dtype="int32")
label.stop_gradient = True
max_probs, indices = fluid.layers.nn.topk(predict, k=1)
max_probs, indices = fluid.layers.nn.topk(input, k=1)
indices = fluid.layers.cast(indices, dtype="int32")
indices.stop_gradient = True
......
......@@ -29,23 +29,21 @@ class RecallK(Metric):
Metric For Fluid Model
"""
def __init__(self, **kwargs):
def __init__(self, input, label, k=20):
""" """
if "input" not in kwargs or "label" not in kwargs:
raise ValueError("RecallK expect input and label as inputs.")
predict = kwargs.get('input')
label = kwargs.get('label')
self.k = kwargs.get("k", 20)
kwargs = locals()
del kwargs['self']
self.k = k
if not isinstance(predict, Variable):
if not isinstance(input, Variable):
raise ValueError("input must be Variable, but received %s" %
type(predict))
type(input))
if not isinstance(label, Variable):
raise ValueError("label must be Variable, but received %s" %
type(label))
helper = LayerHelper("PaddleRec_RecallK", **kwargs)
batch_accuracy = accuracy(predict, label, self.k)
batch_accuracy = accuracy(input, label, self.k)
global_ins_cnt, _ = helper.create_or_get_global_variable(
name="ins_cnt", persistable=True, dtype='float32', shape=[1])
global_pos_cnt, _ = helper.create_or_get_global_variable(
......
# 如何给模型增加Metric
## PaddleRec Metric使用示例
```
from paddlerec.core.model import ModelBase
from paddlerec.core.metrics import RecallK
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def net(self, inputs, is_infer=False):
...
acc = RecallK(input=logits, label=label, k=20)
self._metrics["Train_P@20"] = acc
```
## Metric类
### 成员变量
> _global_metric_state_vars(dict),
字典类型,用以存储metric计算过程中需要的中间状态变量。一般情况下,这些中间状态需要是Persistable=True的变量,所以会在模型保存的时候也会被保存下来。因此infer阶段需手动将这些中间状态值清零,进而保证预测结果的正确性。
### 成员函数
> clear(self, scope):
从scope中将self._global_metric_state_vars中的状态值全清零。该函数一般用在**infer**阶段开始的时候。用以保证预测指标的正确性。
> calc_global_metrics(self, fleet, scope=None):
将self._global_metric_state_vars中的状态值在所有训练节点上做all_reduce操作,进而下一步调用_calculate()函数计算全局指标。若fleet=None,则all_reduce的结果为自己本身,即单机全局指标计算。
> get_result(self): 返回训练过程中需要fetch,并定期打印至屏幕的变量。返回类型为dict。
## Metrics
### AUC
> AUC(input ,label, curve='ROC', num_thresholds=2**12 - 1, topk=1, slide_steps=1)
Auc,全称Area Under the Curve(AUC),该层根据前向输出和标签计算AUC,在二分类(binary classification)估计中广泛使用。在二分类(binary classification)中广泛使用。相关定义参考 https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve 。
#### 参数
- **input(Tensor|LoDTensor)**: 数据类型为float32,float64。浮点二维变量。输入为网络的预测值。shape为[batch_size, 2]。
- **label(Tensor|LoDTensor)**: 数据类型为int64,int32。输入为数据集的标签。shape为[batch_size, 1]。
- **curve(str)**: 曲线类型,可以为 ROC 或 PR,默认 ROC。
- **num_thresholds(int)**: 将roc曲线离散化时使用的临界值数。默认200。
- **topk(int)**: 取topk的输出值用于计算。
- **slide_steps(int)**: - 当计算batch auc时,不仅用当前步也用于先前步。slide_steps=1,表示用当前步;slide_steps = 3表示用当前步和前两步;slide_steps = 0,则用所有步。
#### 返回值
该指标训练过程中定期的变量有两个:
- **AUC**: 整体AUC值
- **BATCH_AUC**:当前batch的AUC值
### PrecisionRecall
> PrecisionRecall(input, label, class_num)
计算precison, recall, f1。
#### 参数
- **input(Tensor|LoDTensor)**: 数据类型为float32,float64。输入为网络的预测值。shape为[batch_size, class_num]
- **label(Tensor|LoDTensor)**: 数据类型为int32。输入为数据集的标签。shape为 [batch_size, 1]
- **class_num(int)**: 类别个数。
#### 返回值
- **[TP FP TN FN]**: 形状为[class_num, 4]的变量,用以表征每种类型的TP,FP,TN和FN值。TP=true positive, FP=false positive, TN=true negative, FN=false negative。若需计算每种类型的precison, recall,f1, 则可根据如下公式进行计算:
precision = TP / (TP + FP); recall = TP = TP / (TP + FN); F1 = 2 * precision * recall / (precision + recall)。
- **precision_recall_f1**: 形状为[6],分别代表[macro_avg_precision, macro_avg_recall, macro_avg_f1, micro_avg_precision, micro_avg_recall, micro_avg_f1],这里macro代表先计算每种类型的准确率,召回率,F1,然后求平均。micro代表先计算所有类型的整体TP,TN, FP, FN等中间值,然后在计算准确率,召回率,F1.
### RecallK
> RecallK(input, label, k=20)
TopK的召回准确率,对于任意一条样本来说,若前top_k个分类结果中包含正确分类标签,则视为正样本。
#### 参数
- **input(Tensor|LoDTensor)**: 数据类型为float32,float64。输入为网络的预测值。shape为[batch_size, class_dim]
- **label(Tensor|LoDTensor)**: 数据类型为int64,int32。输入为数据集的标签。shape为 [batch_size, 1]
- **k(int)**: 取每个类别中top_k个预测值用于计算召回准确率。
#### 返回值
- **InsCnt**:样本总数
- **RecallCnt**: topk可以正确被召回的样本数
- **Acc(Recall@k)**: RecallCnt/InsCnt,即Topk召回准确率。
## PairWise_PN
> PosNegRatio(pos_score, neg_score)
正逆序指标,一般用在输入是pairwise的模型中。例如输入既包含正样本,也包含负样本,模型需要去学习最大化正负样本打分的差异。
#### 参数
- **pos_score(Tensor|LoDTensor)**: 正样本的打分,数据类型为float32,float64。浮点二维变量,值的范围为[0,1]。
- **neg_score(Tensor|LoDTensor)**:负样本的打分。数据类型为float32,float64。浮点二维变量,值的范围为[0,1]。
#### 返回值
- **RightCnt**: pos_score > neg_score的样本数
- **WrongCnt**: pos_score <= neg_score的样本数
- **PN**: (RightCnt + 1.0) / (WrongCnt + 1.0), 正逆序,+1.0是为了避免除0错误。
### Customized_Metric
如果你需要在自定义metric,那么你需要按如下步骤操作:
1. 继承paddlerec.core.Metric,定义你的MyMetric类。
2. 在MyMetric的构造函数中,自定义Metric组网,声明self._global_metric_state_vars私有变量。
3. 定义_calculate(global_metrics),全局指标计算。该函数的输入globla_metrics,存储了self._global_metric_state_vars中所有中间状态变量的全局统计值。最终结果以str格式返回。
自定义Metric模版如下,你可以参考注释,或paddlerec.core.metrics下已经实现的precision_recall, auc, pairwise_pn, recall_k等指标的计算方式,自定义自己的Metric类。
```
from paddlerec.core.Metric import Metric
class MyMetric(Metric):
def __init__(self):
# 1. 自定义Metric组网
** 1. your code **
# 2. 设置中间状态字典
self._global_metric_state_vars = dict()
** 2. your code **
def get_result(self):
# 3. 定义训练过程中需要打印的变量,以字典格式返回
self. _metrics = dict()
** 3. your code **
def _calculate(self, global_metrics):
# 4. 全局指标计算,global_metrics为字典类型,存储了self._global_metric_state_vars中所有中间状态变量的全局统计值。返回格式为str。
** your code **
```
......@@ -113,6 +113,8 @@ def input_data(self, is_infer=False, **kwargs):
可以参考官方模型的示例学习net的构造方法。
除可以使用Paddle的Metrics接口外,PaddleRec也统一封装了一些常见的Metrics评价指标,并允许开发者定义自己的Metrics类,相关文件参考[Metrics开发文档](metrics.md)
## 如何运行自定义模型
记录`model.py`,`config.yaml`及数据读取`reader.py`的文件路径,建议置于同一文件夹下,如`/home/custom_model`下,更改`config.yaml`中的配置选项
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册