Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
b02bc6ca
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b02bc6ca
编写于
7月 27, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update metrics
上级
bee67d95
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
131 addition
and
76 deletion
+131
-76
core/metrics/binary_class/auc.py
core/metrics/binary_class/auc.py
+11
-0
core/metrics/binary_class/precision_recall.py
core/metrics/binary_class/precision_recall.py
+16
-4
core/metrics/pairwise_pn.py
core/metrics/pairwise_pn.py
+11
-0
core/metrics/recall_k.py
core/metrics/recall_k.py
+45
-57
tests/test_auc_metrics.py
tests/test_auc_metrics.py
+20
-10
tests/test_pairwise_pn.py
tests/test_pairwise_pn.py
+13
-5
tests/test_precision_recall_metrics.py
tests/test_precision_recall_metrics.py
+9
-0
tests/test_recall_k.py
tests/test_recall_k.py
+6
-0
未找到文件。
core/metrics/binary_class/auc.py
浏览文件 @
b02bc6ca
...
...
@@ -21,6 +21,7 @@ from paddlerec.core.metric import Metric
from
paddle.fluid.layers
import
nn
,
accuracy
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.tensor
import
Variable
class
AUC
(
Metric
):
...
...
@@ -30,12 +31,22 @@ class AUC(Metric):
def
__init__
(
self
,
**
kwargs
):
""" """
if
"input"
not
in
kwargs
or
"label"
not
in
kwargs
:
raise
ValueError
(
"AUC expect input and label as inputs."
)
predict
=
kwargs
.
get
(
"input"
)
label
=
kwargs
.
get
(
"label"
)
curve
=
kwargs
.
get
(
"curve"
,
'ROC'
)
num_thresholds
=
kwargs
.
get
(
"num_thresholds"
,
2
**
12
-
1
)
topk
=
kwargs
.
get
(
"topk"
,
1
)
slide_steps
=
kwargs
.
get
(
"slide_steps"
,
1
)
if
not
isinstance
(
predict
,
Variable
):
raise
ValueError
(
"input must be Variable, but received %s"
%
type
(
predict
))
if
not
isinstance
(
label
,
Variable
):
raise
ValueError
(
"label must be Variable, but received %s"
%
type
(
label
))
auc_out
,
batch_auc_out
,
[
batch_stat_pos
,
batch_stat_neg
,
stat_pos
,
stat_neg
]
=
fluid
.
layers
.
auc
(
predict
,
...
...
core/metrics/binary_class/precision_recall.py
浏览文件 @
b02bc6ca
...
...
@@ -21,6 +21,7 @@ from paddlerec.core.metric import Metric
from
paddle.fluid.layers
import
nn
,
accuracy
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.tensor
import
Variable
class
PrecisionRecall
(
Metric
):
...
...
@@ -30,12 +31,23 @@ class PrecisionRecall(Metric):
def
__init__
(
self
,
**
kwargs
):
""" """
helper
=
LayerHelper
(
"PaddleRec_PrecisionRecall"
,
**
kwargs
)
if
"input"
not
in
kwargs
or
"label"
not
in
kwargs
or
"class_num"
not
in
kwargs
:
raise
ValueError
(
"PrecisionRecall expect input, label and class_num as inputs."
)
predict
=
kwargs
.
get
(
"input"
)
origin_label
=
kwargs
.
get
(
"label"
)
label
=
fluid
.
layers
.
cast
(
origin_label
,
dtype
=
"int32"
)
label
.
stop_gradient
=
True
label
=
kwargs
.
get
(
"label"
)
num_cls
=
kwargs
.
get
(
"class_num"
)
if
not
isinstance
(
predict
,
Variable
):
raise
ValueError
(
"input must be Variable, but received %s"
%
type
(
predict
))
if
not
isinstance
(
label
,
Variable
):
raise
ValueError
(
"label must be Variable, but received %s"
%
type
(
label
))
helper
=
LayerHelper
(
"PaddleRec_PrecisionRecall"
,
**
kwargs
)
label
=
fluid
.
layers
.
cast
(
label
,
dtype
=
"int32"
)
label
.
stop_gradient
=
True
max_probs
,
indices
=
fluid
.
layers
.
nn
.
topk
(
predict
,
k
=
1
)
indices
=
fluid
.
layers
.
cast
(
indices
,
dtype
=
"int32"
)
indices
.
stop_gradient
=
True
...
...
core/metrics/pairwise_pn.py
浏览文件 @
b02bc6ca
...
...
@@ -21,6 +21,7 @@ from paddlerec.core.metric import Metric
from
paddle.fluid.layers
import
nn
,
accuracy
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.tensor
import
Variable
class
PosNegRatio
(
Metric
):
...
...
@@ -31,9 +32,19 @@ class PosNegRatio(Metric):
def
__init__
(
self
,
**
kwargs
):
""" """
helper
=
LayerHelper
(
"PaddleRec_PosNegRatio"
,
**
kwargs
)
if
"pos_score"
not
in
kwargs
or
"neg_score"
not
in
kwargs
:
raise
ValueError
(
"PosNegRatio expect pos_score and neg_score as inputs."
)
pos_score
=
kwargs
.
get
(
'pos_score'
)
neg_score
=
kwargs
.
get
(
'neg_score'
)
if
not
isinstance
(
pos_score
,
Variable
):
raise
ValueError
(
"pos_score must be Variable, but received %s"
%
type
(
pos_score
))
if
not
isinstance
(
neg_score
,
Variable
):
raise
ValueError
(
"neg_score must be Variable, but received %s"
%
type
(
neg_score
))
wrong
=
fluid
.
layers
.
cast
(
fluid
.
layers
.
less_equal
(
pos_score
,
neg_score
),
dtype
=
'float32'
)
wrong_cnt
=
fluid
.
layers
.
reduce_sum
(
wrong
)
...
...
core/metrics/recall_k.py
浏览文件 @
b02bc6ca
...
...
@@ -21,6 +21,7 @@ from paddlerec.core.metric import Metric
from
paddle.fluid.layers
import
nn
,
accuracy
from
paddle.fluid.initializer
import
Constant
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.tensor
import
Variable
class
RecallK
(
Metric
):
...
...
@@ -30,71 +31,58 @@ class RecallK(Metric):
def
__init__
(
self
,
**
kwargs
):
""" """
if
"input"
not
in
kwargs
or
"label"
not
in
kwargs
:
raise
ValueError
(
"RecallK expect input and label as inputs."
)
predict
=
kwargs
.
get
(
'input'
)
label
=
kwargs
.
get
(
'label'
)
k
=
kwargs
.
get
(
"k"
,
20
)
if
not
isinstance
(
predict
,
Variable
):
raise
ValueError
(
"input must be Variable, but received %s"
%
type
(
predict
))
if
not
isinstance
(
label
,
Variable
):
raise
ValueError
(
"label must be Variable, but received %s"
%
type
(
label
))
helper
=
LayerHelper
(
"PaddleRec_RecallK"
,
**
kwargs
)
predict
=
kwargs
.
get
(
"input"
)
origin_label
=
kwargs
.
get
(
"label"
)
label
=
fluid
.
layers
.
cast
(
origin_label
,
dtype
=
"int32"
)
label
.
stop_gradient
=
True
num_cls
=
kwargs
.
get
(
"class_num"
)
max_probs
,
indices
=
fluid
.
layers
.
nn
.
topk
(
predict
,
k
=
1
)
indices
=
fluid
.
layers
.
cast
(
indices
,
dtype
=
"int32"
)
indices
.
stop_gradient
=
True
states_info
,
_
=
helper
.
create_or_get_global_variable
(
name
=
"states_info"
,
persistable
=
True
,
dtype
=
'float32'
,
shape
=
[
num_cls
,
4
])
states_info
.
stop_gradient
=
True
helper
.
set_variable_initializer
(
states_info
,
Constant
(
value
=
0.0
,
force_cpu
=
True
))
batch_metrics
,
_
=
helper
.
create_or_get_global_variable
(
name
=
"batch_metrics"
,
persistable
=
False
,
dtype
=
'float32'
,
shape
=
[
6
])
accum_metrics
,
_
=
helper
.
create_or_get_global_variable
(
name
=
"global_metrics"
,
persistable
=
False
,
dtype
=
'float32'
,
shape
=
[
6
])
batch_states
=
fluid
.
layers
.
fill_constant
(
shape
=
[
num_cls
,
4
],
value
=
0.0
,
dtype
=
"float32"
)
batch_states
.
stop_gradient
=
True
batch_accuracy
=
accuracy
(
predict
,
label
,
k
)
global_ins_cnt
,
_
=
helper
.
create_or_get_global_variable
(
name
=
"ins_cnt"
,
persistable
=
True
,
dtype
=
'float32'
,
shape
=
[
1
])
global_pos_cnt
,
_
=
helper
.
create_or_get_global_variable
(
name
=
"pos_cnt"
,
persistable
=
True
,
dtype
=
'float32'
,
shape
=
[
1
])
for
var
in
[
global_ins_cnt
,
global_pos_cnt
]:
helper
.
set_variable_initializer
(
var
,
Constant
(
value
=
0.0
,
force_cpu
=
True
))
tmp_ones
=
fluid
.
layers
.
fill_constant
(
shape
=
fluid
.
layers
.
shape
(
label
),
dtype
=
"float32"
,
value
=
1.0
)
batch_ins
=
fluid
.
layers
.
reduce_sum
(
tmp_ones
)
batch_pos
=
batch_ins
*
batch_accuracy
helper
.
append_op
(
type
=
"precision_recall"
,
attrs
=
{
'class_number'
:
num_cls
},
inputs
=
{
'MaxProbs'
:
[
max_probs
],
'Indices'
:
[
indices
],
'Labels'
:
[
label
],
'StatesInfo'
:
[
states_info
]
},
outputs
=
{
'BatchMetrics'
:
[
batch_metrics
],
'AccumMetrics'
:
[
accum_metrics
],
'AccumStatesInfo'
:
[
batch_states
]
})
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
[
global_ins_cnt
],
"Y"
:
[
batch_ins
]},
outputs
=
{
"Out"
:
[
global_ins_cnt
]})
helper
.
append_op
(
type
=
"assign"
,
inputs
=
{
'X'
:
[
batch_states
]},
outputs
=
{
'Out'
:
[
states_info
]})
type
=
"elementwise_add"
,
inputs
=
{
"X"
:
[
global_pos_cnt
],
"Y"
:
[
batch_pos
]},
outputs
=
{
"Out"
:
[
global_pos_cnt
]})
batch_states
.
stop_gradient
=
True
states_info
.
stop_gradient
=
True
self
.
acc
=
global_pos_cnt
/
global_ins_cnt
self
.
_need_clear_list
=
[(
"states_info"
,
"float32"
)]
self
.
_need_clear_list
=
[(
"ins_cnt"
,
"float32"
),
(
"pos_cnt"
,
"float32"
)]
metric_name
=
"Recall@%d_ACC"
%
k
self
.
metrics
=
dict
()
self
.
metrics
[
"precision_recall_f1"
]
=
accum_metrics
self
.
metrics
[
"accum_states"
]
=
states_info
# self.metrics["batch_metrics"] = batch_metrics
self
.
metrics
[
"ins_cnt"
]
=
global_ins_cnt
self
.
metrics
[
"pos_cnt"
]
=
global_pos_cnt
self
.
metrics
[
metric_name
]
=
self
.
acc
def
get_result
(
self
):
return
self
.
metrics
tests/test_auc_metrics.py
浏览文件 @
b02bc6ca
...
...
@@ -25,10 +25,14 @@ class TestAUC(unittest.TestCase):
def
setUp
(
self
):
self
.
ins_num
=
64
self
.
batch_nums
=
3
self
.
probs
=
np
.
random
.
uniform
(
0
,
1.0
,
(
self
.
ins_num
,
2
)).
astype
(
'float32'
)
self
.
labels
=
np
.
random
.
choice
(
range
(
2
),
self
.
ins_num
).
reshape
(
(
self
.
ins_num
,
1
)).
astype
(
'int64'
)
self
.
datas
=
[]
for
i
in
range
(
self
.
batch_nums
):
probs
=
np
.
random
.
uniform
(
0
,
1.0
,
(
self
.
ins_num
,
2
)).
astype
(
'float32'
)
labels
=
np
.
random
.
choice
(
range
(
2
),
self
.
ins_num
).
reshape
(
(
self
.
ins_num
,
1
)).
astype
(
'int64'
)
self
.
datas
.
append
((
probs
,
labels
))
self
.
place
=
fluid
.
core
.
CPUPlace
()
...
...
@@ -37,7 +41,7 @@ class TestAUC(unittest.TestCase):
curve
=
'ROC'
,
num_thresholds
=
self
.
num_thresholds
)
for
i
in
range
(
self
.
batch_nums
):
python_auc
.
update
(
self
.
probs
,
self
.
labels
)
python_auc
.
update
(
self
.
datas
[
i
][
0
],
self
.
datas
[
i
][
1
]
)
self
.
auc
=
np
.
array
(
python_auc
.
eval
())
...
...
@@ -65,15 +69,21 @@ class TestAUC(unittest.TestCase):
exe
=
fluid
.
Executor
(
self
.
place
)
exe
.
run
(
fluid
.
default_startup_program
())
for
i
in
range
(
self
.
batch_nums
):
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'predict'
:
self
.
probs
,
'label'
:
self
.
labels
},
fetch_list
=
fetch_vars
,
return_numpy
=
True
)
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'predict'
:
self
.
datas
[
i
][
0
],
'label'
:
self
.
datas
[
i
][
1
]},
fetch_list
=
fetch_vars
,
return_numpy
=
True
)
outs
=
dict
(
zip
(
metric_keys
,
outs
))
self
.
assertTrue
(
np
.
allclose
(
outs
[
'AUC'
],
self
.
auc
))
def
test_exception
(
self
):
self
.
assertRaises
(
Exception
,
AUC
)
self
.
assertRaises
(
Exception
,
AUC
,
input
=
self
.
datas
[
0
][
0
],
label
=
self
.
datas
[
0
][
1
]),
if
__name__
==
'__main__'
:
unittest
.
main
()
tests/test_pairwise_pn.py
浏览文件 @
b02bc6ca
...
...
@@ -21,12 +21,12 @@ import paddle
import
paddle.fluid
as
fluid
class
Test
AUC
(
unittest
.
TestCase
):
class
Test
PosNegRatio
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
ins_num
=
64
self
.
batch_nums
=
3
self
.
prob
s
=
[]
self
.
data
s
=
[]
self
.
right_cnt
=
0.0
self
.
wrong_cnt
=
0.0
for
i
in
range
(
self
.
batch_nums
):
...
...
@@ -40,7 +40,7 @@ class TestAUC(unittest.TestCase):
'int32'
)
self
.
right_cnt
+=
float
(
right_cnt
)
self
.
wrong_cnt
+=
float
(
wrong_cnt
)
self
.
prob
s
.
append
((
pos_score
,
neg_score
))
self
.
data
s
.
append
((
pos_score
,
neg_score
))
self
.
place
=
fluid
.
core
.
CPUPlace
()
...
...
@@ -68,8 +68,8 @@ class TestAUC(unittest.TestCase):
for
i
in
range
(
self
.
batch_nums
):
outs
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'pos_score'
:
self
.
prob
s
[
i
][
0
],
'neg_score'
:
self
.
prob
s
[
i
][
1
]
'pos_score'
:
self
.
data
s
[
i
][
0
],
'neg_score'
:
self
.
data
s
[
i
][
1
]
},
fetch_list
=
fetch_vars
,
return_numpy
=
True
)
...
...
@@ -82,6 +82,14 @@ class TestAUC(unittest.TestCase):
np
.
array
((
self
.
right_cnt
+
1.0
)
/
(
self
.
wrong_cnt
+
1.0
))))
def
test_exception
(
self
):
self
.
assertRaises
(
Exception
,
PosNegRatio
)
self
.
assertRaises
(
Exception
,
PosNegRatio
,
pos_score
=
self
.
datas
[
0
][
0
],
neg_score
=
self
.
datas
[
0
][
1
]),
if
__name__
==
'__main__'
:
unittest
.
main
()
tests/test_precision_recall_metrics.py
浏览文件 @
b02bc6ca
...
...
@@ -148,6 +148,15 @@ class TestPrecisionRecall(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
outs
[
'accum_states'
],
self
.
states
))
self
.
assertTrue
(
np
.
allclose
(
outs
[
'precision_recall_f1'
],
self
.
metrics
))
def
test_exception
(
self
):
self
.
assertRaises
(
Exception
,
PrecisionRecall
)
self
.
assertRaises
(
Exception
,
PrecisionRecall
,
input
=
self
.
datas
[
0
][
0
],
label
=
self
.
datas
[
0
][
1
],
class_num
=
self
.
cls_num
)
if
__name__
==
'__main__'
:
unittest
.
main
()
tests/test_recall_k.py
浏览文件 @
b02bc6ca
...
...
@@ -85,6 +85,12 @@ class TestRecallK(unittest.TestCase):
np
.
array
(
self
.
match_num
/
(
self
.
ins_num
*
self
.
batch_nums
))))
def
test_exception
(
self
):
self
.
assertRaises
(
Exception
,
RecallK
)
self
.
assertRaises
(
Exception
,
RecallK
,
input
=
self
.
datas
[
0
][
0
],
label
=
self
.
datas
[
0
][
1
]),
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录