base.py 9.7 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiexionghang 已提交
15
import abc
X
xiexionghang 已提交
16 17
import copy
import yaml
T
tangwei 已提交
18
import paddle.fluid as fluid
T
tangwei 已提交
19
from ..utils import table as table
X
xiexionghang 已提交
20 21
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

T
tangwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

class Layer(object):
    """R
    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, config):
        """R
        """
        pass

    def generate(self, mode, param):
        """R
        """
        if mode == 'fluid':
            return self.generate_fluid(param)
        elif mode == 'tensorflow':
            return self.generate_tensorflow(param)
        print('unsupport this mode: ' + mode)
        return None, None

    @abc.abstractmethod
    def generate_fluid(self, param):
        """R
        """
        pass

    def generate_tensorflow(self, param):
        """ Not implement currently
        """
        pass


X
xiexionghang 已提交
55
def create(config):
X
xiexionghang 已提交
56 57 58
    """
    Create a model instance by config
    Args:
T
tangwei 已提交
59
        config(dict) : desc model type and net
X
xiexionghang 已提交
60 61 62
    Return:
        Model Instance
    """
X
xiexionghang 已提交
63 64
    model = None
    if config['mode'] == 'fluid':
T
tangwei 已提交
65
        model = YamlModel(config)
T
tangwei 已提交
66
        model.net()
X
xiexionghang 已提交
67
    return model
T
tangwei 已提交
68

X
xiexionghang 已提交
69

X
xiexionghang 已提交
70
class Model(object):
X
xiexionghang 已提交
71 72 73
    """R
    """
    __metaclass__ = abc.ABCMeta
X
xiexionghang 已提交
74 75

    def __init__(self, config):
X
xiexionghang 已提交
76 77
        """R
        """
X
xiexionghang 已提交
78 79 80
        self._cost = None
        self._metrics = {}
        self._data_var = []
T
tangwei 已提交
81
        self._fetch_interval = 20
T
tangwei 已提交
82

X
xiexionghang 已提交
83
    def get_cost_op(self):
X
xiexionghang 已提交
84 85
        """R
        """
X
xiexionghang 已提交
86 87 88
        return self._cost

    def get_metrics(self):
X
xiexionghang 已提交
89 90
        """R
        """
X
xiexionghang 已提交
91 92
        return self._metrics

T
tangwei 已提交
93 94 95
    def get_fetch_period(self):
        return self._fetch_interval

X
xiexionghang 已提交
96
    @abc.abstractmethod
T
tangwei 已提交
97
    def net(self):
X
xiexionghang 已提交
98 99
        """R
        """
T
tangwei 已提交
100
        pass
X
xiexionghang 已提交
101

T
tangwei 已提交
102 103

class YamlModel(Model):
X
xiexionghang 已提交
104 105
    """R
    """
T
tangwei 已提交
106

X
xiexionghang 已提交
107
    def __init__(self, config):
X
xiexionghang 已提交
108 109
        """R
        """
X
xiexionghang 已提交
110
        Model.__init__(self, config)
T
tangwei 已提交
111 112 113 114 115 116 117
        self._config = config
        self._name = config['name']
        f = open(config['layer_file'], 'r')
        self._build_nodes = yaml.safe_load(f.read())
        self._build_phase = ['input', 'param', 'summary', 'layer']
        self._build_param = {'layer': {}, 'inner_layer': {}, 'layer_extend': {}, 'model': {}}
        self._inference_meta = {'dependency': {}, 'params': {}}
T
tangwei 已提交
118

T
tangwei 已提交
119
    def net(self):
X
xiexionghang 已提交
120 121 122 123 124 125 126 127 128
        """R
        build a fluid model with config
        Return:
            modle_instance(dict)
                train_program
                startup_program
                inference_param : all params name list
                table: table-meta to ps-server
        """
X
xiexionghang 已提交
129 130
        for layer in self._build_nodes['layer']:
            self._build_param['inner_layer'][layer['name']] = layer
T
tangwei 已提交
131

X
xiexionghang 已提交
132 133 134
        self._build_param['table'] = {}
        self._build_param['model']['train_program'] = fluid.Program()
        self._build_param['model']['startup_program'] = fluid.Program()
X
xiexionghang 已提交
135
        with fluid.program_guard(self._build_param['model']['train_program'], \
T
tangwei 已提交
136
                                 self._build_param['model']['startup_program']):
X
xiexionghang 已提交
137 138 139 140 141
            with fluid.unique_name.guard():
                for phase in self._build_phase:
                    if self._build_nodes[phase] is None:
                        continue
                    for node in self._build_nodes[phase]:
T
tangwei 已提交
142
                        exec("""layer=layer.{}(node)""".format(node['class']))
X
xiexionghang 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
                        layer_output, extend_output = layer.generate(self._config['mode'], self._build_param)
                        self._build_param['layer'][node['name']] = layer_output
                        self._build_param['layer_extend'][node['name']] = extend_output
                        if extend_output is None:
                            continue
                        if 'loss' in extend_output:
                            if self._cost is None:
                                self._cost = extend_output['loss']
                            else:
                                self._cost += extend_output['loss']
                        if 'data_var' in extend_output:
                            self._data_var += extend_output['data_var']
                        if 'metric_label' in extend_output and extend_output['metric_label'] is not None:
                            self._metrics[extend_output['metric_label']] = extend_output['metric_dict']

                        if 'inference_param' in extend_output:
X
xiexionghang 已提交
159 160
                            inference_param = extend_output['inference_param']
                            param_name = inference_param['name']
X
xiexionghang 已提交
161
                            if param_name not in self._build_param['table']:
T
tangwei 已提交
162
                                self._build_param['table'][param_name] = {'params': []}
T
tangwei 已提交
163
                                table_meta = table.TableMeta.alloc_new_table(inference_param['table_id'])
X
xiexionghang 已提交
164
                                self._build_param['table'][param_name]['_meta'] = table_meta
X
xiexionghang 已提交
165
                            self._build_param['table'][param_name]['params'] += inference_param['params']
X
xiexionghang 已提交
166
        pass
T
tangwei 已提交
167

X
xiexionghang 已提交
168 169
    @classmethod
    def build_optimizer(self, params):
X
xiexionghang 已提交
170 171
        """R
        """
X
xiexionghang 已提交
172 173 174 175 176 177 178 179
        optimizer_conf = params['optimizer_conf']
        strategy = None
        if 'strategy' in optimizer_conf:
            strategy = optimizer_conf['strategy']
            stat_var_names = []
            metrics = params['metrics']
            for name in metrics:
                model_metrics = metrics[name]
X
xiexionghang 已提交
180
                stat_var_names += [model_metrics[metric]['var'].name for metric in model_metrics]
X
xiexionghang 已提交
181
            strategy['stat_var_names'] = list(set(stat_var_names))
X
xiexionghang 已提交
182
        optimizer_generator = 'optimizer = fluid.optimizer.' + optimizer_conf['class'] + \
T
tangwei 已提交
183 184
                              '(learning_rate=' + str(optimizer_conf['learning_rate']) + ')'
        exec(optimizer_generator)
X
xiexionghang 已提交
185 186 187 188
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        return optimizer

    def dump_model_program(self, path):
X
xiexionghang 已提交
189 190
        """R
        """
X
xiexionghang 已提交
191 192 193 194 195 196 197
        with open(path + '/' + self._name + '_main_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['train_program']
        with open(path + '/' + self._name + '_startup_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['startup_program']
        pass

    def shrink(self, params):
X
xiexionghang 已提交
198 199
        """R
        """
X
xiexionghang 已提交
200 201 202 203 204 205 206
        scope = params['scope']
        decay = params['decay']
        for param_table in self._build_param['table']:
            table_id = self._build_param['table'][param_table]['_meta']._table_id
            fleet.shrink_dense_table(decay, scope=scope, table_id=table_id)

    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
207 208
        """R
        """
X
xiexionghang 已提交
209 210 211
        pass

    def dump_inference_param(self, params):
X
xiexionghang 已提交
212 213
        """R
        """
X
xiexionghang 已提交
214 215 216
        scope = params['scope']
        executor = params['executor']
        program = self._build_param['model']['train_program']
X
xiexionghang 已提交
217
        for table_name, table in self._build_param['table'].items():
X
xiexionghang 已提交
218 219 220
            fleet._fleet_ptr.pull_dense(scope, table['_meta']._table_id, table['params'])
        for infernce_item in params['inference_list']:
            params_name_list = self.inference_params(infernce_item['layer_name'])
X
xiexionghang 已提交
221
            params_var_list = [program.global_block().var(i) for i in params_name_list]
X
xiexionghang 已提交
222 223 224
            params_file_name = infernce_item['save_file_name']
            with fluid.scope_guard(scope):
                if params['save_combine']:
X
xiexionghang 已提交
225
                    fluid.io.save_vars(executor, "./", \
T
tangwei 已提交
226
                                       program, vars=params_var_list, filename=params_file_name)
X
xiexionghang 已提交
227 228
                else:
                    fluid.io.save_vars(executor, params_file_name, program, vars=params_var_list)
T
tangwei 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265

    def inference_params(self, inference_layer):
        """
        get params name for inference_layer
        Args:
            inference_layer(str): layer for inference
        Return:
            params(list): params name list that for inference layer
        """
        layer = inference_layer
        if layer in self._inference_meta['params']:
            return self._inference_meta['params'][layer]

        self._inference_meta['params'][layer] = []
        self._inference_meta['dependency'][layer] = self.get_dependency(self._build_param['inner_layer'], layer)
        for node in self._build_nodes['layer']:
            if node['name'] not in self._inference_meta['dependency'][layer]:
                continue
            if 'inference_param' in self._build_param['layer_extend'][node['name']]:
                self._inference_meta['params'][layer] += \
                    self._build_param['layer_extend'][node['name']]['inference_param']['params']
        return self._inference_meta['params'][layer]

    def get_dependency(self, layer_graph, dest_layer):
        """
        get model of dest_layer depends on
        Args:
            layer_graph(dict) : all model in graph
        Return:
            depend_layers(list) : sub-graph model for calculate dest_layer
        """
        dependency_list = []
        if dest_layer in layer_graph:
            dependencys = copy.deepcopy(layer_graph[dest_layer]['input'])
            dependency_list = copy.deepcopy(dependencys)
            for dependency in dependencys:
                dependency_list = dependency_list + self.get_dependency(layer_graph, dependency)
T
tangwei 已提交
266
        return list(set(dependency_list))