base.py 10.2 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiexionghang 已提交
15
import abc
X
xiexionghang 已提交
16 17
import copy
import yaml
T
tangwei 已提交
18
import paddle.fluid as fluid
T
tangwei 已提交
19
from ..utils import table as table
X
xiexionghang 已提交
20 21
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

T
tangwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

class Layer(object):
    """R
    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, config):
        """R
        """
        pass

    def generate(self, mode, param):
        """R
        """
        if mode == 'fluid':
            return self.generate_fluid(param)
        elif mode == 'tensorflow':
            return self.generate_tensorflow(param)
        print('unsupport this mode: ' + mode)
        return None, None

    @abc.abstractmethod
    def generate_fluid(self, param):
        """R
        """
        pass

    def generate_tensorflow(self, param):
        """ Not implement currently
        """
        pass


X
xiexionghang 已提交
55
def create(config):
X
xiexionghang 已提交
56 57 58
    """
    Create a model instance by config
    Args:
T
tangwei 已提交
59
        config(dict) : desc model type and net
X
xiexionghang 已提交
60 61 62
    Return:
        Model Instance
    """
X
xiexionghang 已提交
63 64
    model = None
    if config['mode'] == 'fluid':
T
tangwei 已提交
65
        model = YamlModel(config)
X
xiexionghang 已提交
66 67
        model.build_model()
    return model
T
tangwei 已提交
68

X
xiexionghang 已提交
69

X
xiexionghang 已提交
70
class Model(object):
X
xiexionghang 已提交
71 72 73
    """R
    """
    __metaclass__ = abc.ABCMeta
X
xiexionghang 已提交
74 75

    def __init__(self, config):
X
xiexionghang 已提交
76 77
        """R
        """
X
xiexionghang 已提交
78 79 80 81 82
        self._config = config
        self._name = config['name']
        f = open(config['layer_file'], 'r')
        self._build_nodes = yaml.safe_load(f.read())
        self._build_phase = ['input', 'param', 'summary', 'layer']
T
tangwei 已提交
83 84
        self._build_param = {'layer': {}, 'inner_layer': {}, 'layer_extend': {}, 'model': {}}
        self._inference_meta = {'dependency': {}, 'params': {}}
X
xiexionghang 已提交
85 86 87
        self._cost = None
        self._metrics = {}
        self._data_var = []
T
tangwei 已提交
88
        self._fetch_interval = 10
T
tangwei 已提交
89

X
xiexionghang 已提交
90
    def get_cost_op(self):
X
xiexionghang 已提交
91 92
        """R
        """
X
xiexionghang 已提交
93 94 95
        return self._cost

    def get_metrics(self):
X
xiexionghang 已提交
96 97
        """R
        """
X
xiexionghang 已提交
98 99
        return self._metrics

T
tangwei 已提交
100 101 102
    def get_fetch_period(self):
        return self._fetch_interval

X
xiexionghang 已提交
103
    @abc.abstractmethod
X
xiexionghang 已提交
104
    def shrink(self, params):
X
xiexionghang 已提交
105 106
        """R
        """
T
tangwei 已提交
107
        pass
X
xiexionghang 已提交
108

X
xiexionghang 已提交
109
    @abc.abstractmethod
T
tangwei 已提交
110
    def build_model(self):
X
xiexionghang 已提交
111 112
        """R
        """
X
xiexionghang 已提交
113 114
        pass

X
xiexionghang 已提交
115
    @abc.abstractmethod
X
xiexionghang 已提交
116
    def dump_model_program(self, path):
X
xiexionghang 已提交
117 118
        """R
        """
X
xiexionghang 已提交
119 120
        pass

X
xiexionghang 已提交
121
    @abc.abstractmethod
X
xiexionghang 已提交
122
    def dump_inference_param(self, params):
X
xiexionghang 已提交
123 124
        """R
        """
X
xiexionghang 已提交
125
        pass
X
xiexionghang 已提交
126

X
xiexionghang 已提交
127
    @abc.abstractmethod
X
xiexionghang 已提交
128
    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
129 130
        """R
        """
X
xiexionghang 已提交
131
        pass
T
tangwei 已提交
132

X
xiexionghang 已提交
133
    def inference_params(self, inference_layer):
X
xiexionghang 已提交
134
        """
T
tangwei 已提交
135
        get params name for inference_layer
X
xiexionghang 已提交
136 137 138 139 140
        Args:
            inference_layer(str): layer for inference
        Return:
            params(list): params name list that for inference layer
        """
X
xiexionghang 已提交
141 142 143
        layer = inference_layer
        if layer in self._inference_meta['params']:
            return self._inference_meta['params'][layer]
T
tangwei 已提交
144

X
xiexionghang 已提交
145 146 147 148 149 150
        self._inference_meta['params'][layer] = []
        self._inference_meta['dependency'][layer] = self.get_dependency(self._build_param['inner_layer'], layer)
        for node in self._build_nodes['layer']:
            if node['name'] not in self._inference_meta['dependency'][layer]:
                continue
            if 'inference_param' in self._build_param['layer_extend'][node['name']]:
X
xiexionghang 已提交
151
                self._inference_meta['params'][layer] += \
T
tangwei 已提交
152
                    self._build_param['layer_extend'][node['name']]['inference_param']['params']
X
xiexionghang 已提交
153 154 155
        return self._inference_meta['params'][layer]

    def get_dependency(self, layer_graph, dest_layer):
X
xiexionghang 已提交
156
        """
T
tangwei 已提交
157
        get model of dest_layer depends on
X
xiexionghang 已提交
158
        Args:
T
tangwei 已提交
159
            layer_graph(dict) : all model in graph
X
xiexionghang 已提交
160
        Return:
T
tangwei 已提交
161
            depend_layers(list) : sub-graph model for calculate dest_layer
X
xiexionghang 已提交
162
        """
X
xiexionghang 已提交
163 164 165 166 167 168 169 170
        dependency_list = []
        if dest_layer in layer_graph:
            dependencys = copy.deepcopy(layer_graph[dest_layer]['input'])
            dependency_list = copy.deepcopy(dependencys)
            for dependency in dependencys:
                dependency_list = dependency_list + self.get_dependency(layer_graph, dependency)
        return list(set(dependency_list))

T
tangwei 已提交
171 172

class YamlModel(Model):
X
xiexionghang 已提交
173 174
    """R
    """
T
tangwei 已提交
175

X
xiexionghang 已提交
176
    def __init__(self, config):
X
xiexionghang 已提交
177 178
        """R
        """
X
xiexionghang 已提交
179 180
        Model.__init__(self, config)
        pass
T
tangwei 已提交
181 182

    def build_model(self):
X
xiexionghang 已提交
183 184 185 186 187 188 189 190 191
        """R
        build a fluid model with config
        Return:
            modle_instance(dict)
                train_program
                startup_program
                inference_param : all params name list
                table: table-meta to ps-server
        """
X
xiexionghang 已提交
192 193
        for layer in self._build_nodes['layer']:
            self._build_param['inner_layer'][layer['name']] = layer
T
tangwei 已提交
194

X
xiexionghang 已提交
195 196 197
        self._build_param['table'] = {}
        self._build_param['model']['train_program'] = fluid.Program()
        self._build_param['model']['startup_program'] = fluid.Program()
X
xiexionghang 已提交
198
        with fluid.program_guard(self._build_param['model']['train_program'], \
T
tangwei 已提交
199
                                 self._build_param['model']['startup_program']):
X
xiexionghang 已提交
200 201 202 203 204
            with fluid.unique_name.guard():
                for phase in self._build_phase:
                    if self._build_nodes[phase] is None:
                        continue
                    for node in self._build_nodes[phase]:
T
tangwei 已提交
205
                        exec("""layer=layer.{}(node)""".format(node['class']))
X
xiexionghang 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
                        layer_output, extend_output = layer.generate(self._config['mode'], self._build_param)
                        self._build_param['layer'][node['name']] = layer_output
                        self._build_param['layer_extend'][node['name']] = extend_output
                        if extend_output is None:
                            continue
                        if 'loss' in extend_output:
                            if self._cost is None:
                                self._cost = extend_output['loss']
                            else:
                                self._cost += extend_output['loss']
                        if 'data_var' in extend_output:
                            self._data_var += extend_output['data_var']
                        if 'metric_label' in extend_output and extend_output['metric_label'] is not None:
                            self._metrics[extend_output['metric_label']] = extend_output['metric_dict']

                        if 'inference_param' in extend_output:
X
xiexionghang 已提交
222 223
                            inference_param = extend_output['inference_param']
                            param_name = inference_param['name']
X
xiexionghang 已提交
224
                            if param_name not in self._build_param['table']:
T
tangwei 已提交
225
                                self._build_param['table'][param_name] = {'params': []}
T
tangwei 已提交
226
                                table_meta = table.TableMeta.alloc_new_table(inference_param['table_id'])
X
xiexionghang 已提交
227
                                self._build_param['table'][param_name]['_meta'] = table_meta
X
xiexionghang 已提交
228
                            self._build_param['table'][param_name]['params'] += inference_param['params']
X
xiexionghang 已提交
229
        pass
T
tangwei 已提交
230

X
xiexionghang 已提交
231 232
    @classmethod
    def build_optimizer(self, params):
X
xiexionghang 已提交
233 234
        """R
        """
X
xiexionghang 已提交
235 236 237 238 239 240 241 242
        optimizer_conf = params['optimizer_conf']
        strategy = None
        if 'strategy' in optimizer_conf:
            strategy = optimizer_conf['strategy']
            stat_var_names = []
            metrics = params['metrics']
            for name in metrics:
                model_metrics = metrics[name]
X
xiexionghang 已提交
243
                stat_var_names += [model_metrics[metric]['var'].name for metric in model_metrics]
X
xiexionghang 已提交
244
            strategy['stat_var_names'] = list(set(stat_var_names))
X
xiexionghang 已提交
245
        optimizer_generator = 'optimizer = fluid.optimizer.' + optimizer_conf['class'] + \
T
tangwei 已提交
246 247
                              '(learning_rate=' + str(optimizer_conf['learning_rate']) + ')'
        exec(optimizer_generator)
X
xiexionghang 已提交
248 249 250 251
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        return optimizer

    def dump_model_program(self, path):
X
xiexionghang 已提交
252 253
        """R
        """
X
xiexionghang 已提交
254 255 256 257 258 259 260
        with open(path + '/' + self._name + '_main_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['train_program']
        with open(path + '/' + self._name + '_startup_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['startup_program']
        pass

    def shrink(self, params):
X
xiexionghang 已提交
261 262
        """R
        """
X
xiexionghang 已提交
263 264 265 266 267 268 269
        scope = params['scope']
        decay = params['decay']
        for param_table in self._build_param['table']:
            table_id = self._build_param['table'][param_table]['_meta']._table_id
            fleet.shrink_dense_table(decay, scope=scope, table_id=table_id)

    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
270 271
        """R
        """
X
xiexionghang 已提交
272 273 274
        pass

    def dump_inference_param(self, params):
X
xiexionghang 已提交
275 276
        """R
        """
X
xiexionghang 已提交
277 278 279
        scope = params['scope']
        executor = params['executor']
        program = self._build_param['model']['train_program']
X
xiexionghang 已提交
280
        for table_name, table in self._build_param['table'].items():
X
xiexionghang 已提交
281 282 283
            fleet._fleet_ptr.pull_dense(scope, table['_meta']._table_id, table['params'])
        for infernce_item in params['inference_list']:
            params_name_list = self.inference_params(infernce_item['layer_name'])
X
xiexionghang 已提交
284
            params_var_list = [program.global_block().var(i) for i in params_name_list]
X
xiexionghang 已提交
285 286 287
            params_file_name = infernce_item['save_file_name']
            with fluid.scope_guard(scope):
                if params['save_combine']:
X
xiexionghang 已提交
288
                    fluid.io.save_vars(executor, "./", \
T
tangwei 已提交
289
                                       program, vars=params_var_list, filename=params_file_name)
X
xiexionghang 已提交
290 291
                else:
                    fluid.io.save_vars(executor, params_file_name, program, vars=params_var_list)