Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
72c56faf
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
72c56faf
编写于
3月 05, 2020
作者:
X
xiexionghang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
depend on paddle with bcloud
上级
3e834fec
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
190 addition
and
51 deletion
+190
-51
kagle/kagle_layer.py
kagle/kagle_layer.py
+107
-37
kagle/kagle_model.py
kagle/kagle_model.py
+83
-14
未找到文件。
kagle/kagle_layer.py
浏览文件 @
72c56faf
"""
DnnLayer: analyse layer config, and parse to Paddle Operator, build net
"""
import
abc
import
paddle.fluid
as
fluid
from
abc
import
ABCMeta
,
abstractmethod
class
Layer
(
object
):
__metaclass__
=
ABCMeta
"""R
"""
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
config
):
"""R
"""
pass
def
generate
(
self
,
mode
,
param
):
"""R
"""
if
mode
==
'fluid'
:
return
self
.
generate_fluid
(
param
)
elif
mode
==
'tensorflow'
:
return
self
.
generate_tensorflow
(
param
)
print
(
'unsupport this mode: '
+
mode
)
return
None
,
None
return
None
,
None
@
abstractmethod
@
ab
c
.
ab
stractmethod
def
generate_fluid
(
self
,
param
):
"""R
"""
pass
# maybe
#@abstractmethod
def
generate_tensorflow
(
self
,
param
):
""" Not implement currently
"""
pass
class
EmbeddingInputLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_cvm
=
config
[
'cvm'
]
self
.
_name
=
config
[
'name'
]
self
.
_slots
=
[
str
(
slot
)
for
slot
in
config
[
'slots'
]
]
self
.
_slots
=
[
str
(
slot
)
for
slot
in
config
[
'slots'
]
]
self
.
_mf_dim
=
config
[
'mf_dim'
]
self
.
_backward
=
config
[
'backward'
]
self
.
_emb_dim
=
self
.
_mf_dim
+
3
#append show ctr lr
self
.
_emb_layers
=
[]
def
generate_fluid
(
self
,
param
):
"""R
"""
show_clk
=
fluid
.
layers
.
concat
(
[
param
[
'layer'
][
'show'
],
param
[
'layer'
][
'click'
]],
axis
=
1
)
show_clk
.
stop_gradient
=
True
...
...
@@ -42,39 +60,61 @@ class EmbeddingInputLayer(Layer):
for
slot
in
self
.
_slots
:
l
=
fluid
.
layers
.
data
(
name
=
slot
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
data_var
.
append
(
l
)
emb
=
fluid
.
layers
.
embedding
(
input
=
l
,
size
=
[
10
,
self
.
_emb_dim
],
is_sparse
=
True
,
is_distributed
=
True
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"embedding"
))
emb
=
fluid
.
layers
.
embedding
(
input
=
l
,
size
=
[
10
,
self
.
_emb_dim
],
\
is_sparse
=
True
,
is_distributed
=
True
,
param_attr
=
fluid
.
ParamAttr
(
name
=
"embedding"
))
emb
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'sum'
)
emb
=
fluid
.
layers
.
continuous_value_model
(
emb
,
show_clk
,
self
.
_cvm
)
self
.
_emb_layers
.
append
(
emb
)
output
=
fluid
.
layers
.
concat
(
input
=
self
.
_emb_layers
,
axis
=
1
,
name
=
self
.
_name
)
return
output
,
{
'data_var'
:
data_var
}
class
LabelInputLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_dim
=
config
.
get
(
'dim'
,
1
)
self
.
_data_type
=
config
.
get
(
'data_type'
,
"int64"
)
self
.
_label_idx
=
config
[
'label_idx'
]
def
generate_fluid
(
self
,
param
):
label
=
fluid
.
layers
.
data
(
name
=
self
.
_name
,
shape
=
[
-
1
,
self
.
_dim
],
dtype
=
self
.
_data_type
,
lod_level
=
0
,
append_batch_size
=
False
)
"""R
"""
label
=
fluid
.
layers
.
data
(
name
=
self
.
_name
,
shape
=
[
-
1
,
self
.
_dim
],
\
dtype
=
self
.
_data_type
,
lod_level
=
0
,
append_batch_size
=
False
)
cast_label
=
fluid
.
layers
.
cast
(
label
,
dtype
=
'float32'
)
cast_label
.
stop_gradient
=
True
return
cast_label
,
{
'data_var'
:
[
label
]}
return
cast_label
,
{
'data_var'
:
[
label
]}
class
TagInputLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_tag
=
config
[
'tag'
]
self
.
_dim
=
config
.
get
(
'dim'
,
1
)
self
.
_data_type
=
config
[
'data_type'
]
def
generate_fluid
(
self
,
param
):
output
=
fluid
.
layers
.
data
(
name
=
self
.
_name
,
shape
=
[
-
1
,
self
.
_dim
],
dtype
=
self
.
_data_type
,
lod_level
=
0
,
append_batch_size
=
False
,
stop_gradient
=
True
)
return
output
,
{
'data_var'
:
[
output
]}
"""R
"""
output
=
fluid
.
layers
.
data
(
name
=
self
.
_name
,
shape
=
[
-
1
,
self
.
_dim
],
\
dtype
=
self
.
_data_type
,
lod_level
=
0
,
append_batch_size
=
False
,
stop_gradient
=
True
)
return
output
,
{
'data_var'
:
[
output
]}
class
ParamLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_coln
=
config
[
'coln'
]
self
.
_table_id
=
config
.
get
(
'table_id'
,
-
1
)
...
...
@@ -83,40 +123,59 @@ class ParamLayer(Layer):
self
.
_config
=
config
def
generate_fluid
(
self
,
param
):
"""R
"""
return
self
.
_config
,
{
'inference_param'
:
{
'name'
:
'param'
,
'params'
:
[],
'table_id'
:
self
.
_table_id
}}
class
SummaryLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_table_id
=
config
.
get
(
'table_id'
,
-
1
)
self
.
_data_type
=
config
.
get
(
'data_type'
,
'float32'
)
self
.
_config
=
config
def
generate_fluid
(
self
,
param
):
return
self
.
_config
,
{
'inference_param'
:
{
'name'
:
'summary'
,
'params'
:
[],
'table_id'
:
self
.
_table_id
}}
"""R
"""
return
self
.
_config
,
{
'inference_param'
:
{
'name'
:
'summary'
,
'params'
:
[],
'table_id'
:
self
.
_table_id
}}
class
NormalizetionLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_input
=
config
[
'input'
]
self
.
_summary
=
config
[
'summary'
]
self
.
_table_id
=
config
.
get
(
'table_id'
,
-
1
)
def
generate_fluid
(
self
,
param
):
"""R
"""
input_layer
=
param
[
'layer'
][
self
.
_input
[
0
]]
summary_layer
=
param
[
'layer'
][
self
.
_summary
]
if
len
(
self
.
_input
)
>
0
:
input_list
=
[
param
[
'layer'
][
i
]
for
i
in
self
.
_input
]
input_list
=
[
param
[
'layer'
][
i
]
for
i
in
self
.
_input
]
input_layer
=
fluid
.
layers
.
concat
(
input
=
input_list
,
axis
=
1
)
bn
=
fluid
.
layers
.
data_norm
(
input
=
input_layer
,
name
=
self
.
_name
,
epsilon
=
1e-4
,
param_attr
=
{
"batch_size"
:
1e4
,
"batch_sum_default"
:
0.0
,
"batch_square"
:
1e4
})
inference_param
=
[
self
.
_name
+
'.batch_size'
,
self
.
_name
+
'.batch_sum'
,
self
.
_name
+
'.batch_square_sum'
]
return
bn
,
{
'inference_param'
:
{
'name'
:
'summary'
,
'params'
:
inference_param
,
'table_id'
:
summary_layer
.
get
(
'table_id'
,
-
1
)}}
"batch_size"
:
1e4
,
"batch_sum_default"
:
0.0
,
"batch_square"
:
1e4
})
inference_param
=
[
self
.
_name
+
'.batch_size'
,
self
.
_name
+
'.batch_sum'
,
self
.
_name
+
'.batch_square_sum'
]
return
bn
,
{
'inference_param'
:
{
'name'
:
'summary'
,
'params'
:
inference_param
,
'table_id'
:
summary_layer
.
get
(
'table_id'
,
-
1
)}}
class
NeuralLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_param
=
config
[
'param'
]
self
.
_input
=
config
[
'input'
]
...
...
@@ -124,16 +183,19 @@ class NeuralLayer(Layer):
self
.
_act_func
=
config
.
get
(
'act_func'
,
None
)
def
generate_fluid
(
self
,
param
):
"""R
"""
param_layer
=
param
[
'layer'
][
self
.
_param
]
input_layer
=
param
[
'layer'
][
self
.
_input
[
0
]]
if
len
(
self
.
_input
)
>
0
:
input_list
=
[
param
[
'layer'
][
i
]
for
i
in
self
.
_input
]
input_list
=
[
param
[
'layer'
][
i
]
for
i
in
self
.
_input
]
input_layer
=
fluid
.
layers
.
concat
(
input
=
input_list
,
axis
=
1
)
input_coln
=
input_layer
.
shape
[
1
]
scale
=
param_layer
[
'init_range'
]
/
(
input_coln
**
0.5
)
bias
=
None
if
self
.
_bias
:
bias
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
))
bias
=
fluid
.
ParamAttr
(
learning_rate
=
1.0
,
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
))
fc
=
fluid
.
layers
.
fc
(
name
=
self
.
_name
,
input
=
input_layer
,
...
...
@@ -146,8 +208,13 @@ class NeuralLayer(Layer):
inference_param
=
[
self
.
_name
+
'.w_0'
,
self
.
_name
+
'.b_0'
]
return
fc
,
{
'inference_param'
:
{
'name'
:
'param'
,
'params'
:
inference_param
,
'table_id'
:
param_layer
.
get
(
'table_id'
,
-
1
)}}
class
SigmoidLossLayer
(
Layer
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
self
.
_name
=
config
[
'name'
]
self
.
_label
=
config
[
'label'
]
self
.
_input
=
config
[
'input'
]
...
...
@@ -155,28 +222,30 @@ class SigmoidLossLayer(Layer):
self
.
_metric_label
=
config
.
get
(
'metric_label'
,
None
)
self
.
_bound
=
config
.
get
(
'bound'
,
[
-
15.0
,
15.0
])
self
.
_extend_output
=
{
'metric_label'
:
self
.
_metric_label
,
'metric_dict'
:
{
'auc'
:
{
'var'
:
None
},
'batch_auc'
:
{
'var'
:
None
},
'stat_pos'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'stat_neg'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'batch_stat_pos'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'batch_stat_neg'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'pos_ins_num'
:
{
'var'
:
None
},
'abserr'
:
{
'var'
:
None
},
'sqrerr'
:
{
'var'
:
None
},
'prob'
:
{
'var'
:
None
},
'total_ins_num'
:
{
'var'
:
None
},
'q'
:
{
'var'
:
None
}
'metric_label'
:
self
.
_metric_label
,
'metric_dict'
:
{
'auc'
:
{
'var'
:
None
},
'batch_auc'
:
{
'var'
:
None
},
'stat_pos'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'stat_neg'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'batch_stat_pos'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'batch_stat_neg'
:
{
'var'
:
None
,
'data_type'
:
'int64'
},
'pos_ins_num'
:
{
'var'
:
None
},
'abserr'
:
{
'var'
:
None
},
'sqrerr'
:
{
'var'
:
None
},
'prob'
:
{
'var'
:
None
},
'total_ins_num'
:
{
'var'
:
None
},
'q'
:
{
'var'
:
None
}
}
}
def
generate_fluid
(
self
,
param
):
"""R
"""
input_layer
=
param
[
'layer'
][
self
.
_input
[
0
]]
label_layer
=
param
[
'layer'
][
self
.
_label
]
output
=
fluid
.
layers
.
clip
(
input_layer
,
self
.
_bound
[
0
],
self
.
_bound
[
1
],
name
=
self
.
_name
)
output
=
fluid
.
layers
.
clip
(
input_layer
,
self
.
_bound
[
0
],
self
.
_bound
[
1
],
name
=
self
.
_name
)
norm
=
fluid
.
layers
.
sigmoid
(
output
,
name
=
self
.
_name
)
output
=
fluid
.
layers
.
log_loss
(
norm
,
fluid
.
layers
.
cast
(
x
=
label_layer
,
dtype
=
'float32'
))
if
self
.
_weight
:
...
...
@@ -191,7 +260,8 @@ class SigmoidLossLayer(Layer):
input
=
[
fluid
.
layers
.
elementwise_sub
(
fluid
.
layers
.
ceil
(
norm
),
norm
),
norm
],
axis
=
1
)
metric
[
'auc'
][
'var'
],
metric
[
'batch_auc'
][
'var'
],
[
metric
[
'batch_stat_pos'
][
'var'
],
\
metric
[
'batch_stat_neg'
][
'var'
],
metric
[
'stat_pos'
][
'var'
],
metric
[
'stat_neg'
][
'var'
]]
=
\
fluid
.
layers
.
auc
(
input
=
binary_predict
,
label
=
fluid
.
layers
.
cast
(
x
=
label_layer
,
dtype
=
'int64'
),
curve
=
'ROC'
,
num_thresholds
=
32
)
fluid
.
layers
.
auc
(
input
=
binary_predict
,
label
=
fluid
.
layers
.
cast
(
x
=
label_layer
,
dtype
=
'int64'
),
\
curve
=
'ROC'
,
num_thresholds
=
32
)
metric
[
'sqrerr'
][
'var'
],
metric
[
'abserr'
][
'var'
],
metric
[
'prob'
][
'var'
],
metric
[
'q'
][
'var'
],
\
metric
[
'pos_ins_num'
][
'var'
],
metric
[
'total_ins_num'
][
'var'
]
=
\
...
...
kagle/kagle_model.py
浏览文件 @
72c56faf
"""
Model Net: analyse layer config, and parse to Paddle Pragram
"""
import
abc
import
copy
import
yaml
import
kagle_layer
import
kagle_table
import
kagle
.kagle
_layer
import
kagle
.kagle
_table
import
paddle.fluid
as
fluid
from
abc
import
ABCMeta
,
abstractmethod
from
paddle.fluid.incubate.fleet.parameter_server.pslib
import
fleet
def
create
(
config
):
"""
Create a model instance by config
Args:
config(dict) : desc model type and net
Return:
Model Instance
"""
model
=
None
if
config
[
'mode'
]
==
'fluid'
:
model
=
FluidModel
(
config
)
model
.
build_model
()
return
model
class
Model
(
object
):
__metaclass__
=
ABCMeta
"""R
"""
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
config
):
"""R
"""
self
.
_config
=
config
self
.
_name
=
config
[
'name'
]
f
=
open
(
config
[
'layer_file'
],
'r'
)
...
...
@@ -30,31 +45,52 @@ class Model(object):
pass
def
get_cost_op
(
self
):
"""R
"""
return
self
.
_cost
def
get_metrics
(
self
):
"""R
"""
return
self
.
_metrics
@
abstractmethod
@
ab
c
.
ab
stractmethod
def
shrink
(
self
,
params
):
"""R
"""
pass
@
abstractmethod
@
ab
c
.
ab
stractmethod
def
build_model
(
self
):
"""R
"""
pass
@
abstractmethod
@
ab
c
.
ab
stractmethod
def
dump_model_program
(
self
,
path
):
"""R
"""
pass
@
abstractmethod
@
ab
c
.
ab
stractmethod
def
dump_inference_param
(
self
,
params
):
"""R
"""
pass
@
abstractmethod
@
ab
c
.
ab
stractmethod
def
dump_inference_program
(
self
,
inference_layer
,
path
):
"""R
"""
pass
def
inference_params
(
self
,
inference_layer
):
"""
get params name for inference_layer
Args:
inference_layer(str): layer for inference
Return:
params(list): params name list that for inference layer
"""
layer
=
inference_layer
if
layer
in
self
.
_inference_meta
[
'params'
]:
return
self
.
_inference_meta
[
'params'
][
layer
]
...
...
@@ -69,6 +105,13 @@ class Model(object):
return
self
.
_inference_meta
[
'params'
][
layer
]
def
get_dependency
(
self
,
layer_graph
,
dest_layer
):
"""
get layers of dest_layer depends on
Args:
layer_graph(dict) : all layers in graph
Return:
depend_layers(list) : sub-graph layers for calculate dest_layer
"""
dependency_list
=
[]
if
dest_layer
in
layer_graph
:
dependencys
=
copy
.
deepcopy
(
layer_graph
[
dest_layer
][
'input'
])
...
...
@@ -79,11 +122,24 @@ class Model(object):
class
FluidModel
(
Model
):
"""R
"""
def
__init__
(
self
,
config
):
"""R
"""
Model
.
__init__
(
self
,
config
)
pass
def
build_model
(
self
):
"""R
build a fluid model with config
Return:
modle_instance(dict)
train_program
startup_program
inference_param : all params name list
table: table-meta to ps-server
"""
for
layer
in
self
.
_build_nodes
[
'layer'
]:
self
.
_build_param
[
'inner_layer'
][
layer
[
'name'
]]
=
layer
...
...
@@ -91,7 +147,8 @@ class FluidModel(Model):
self
.
_build_param
[
'table'
]
=
{}
self
.
_build_param
[
'model'
][
'train_program'
]
=
fluid
.
Program
()
self
.
_build_param
[
'model'
][
'startup_program'
]
=
fluid
.
Program
()
with
fluid
.
program_guard
(
self
.
_build_param
[
'model'
][
'train_program'
],
self
.
_build_param
[
'model'
][
'startup_program'
]):
with
fluid
.
program_guard
(
self
.
_build_param
[
'model'
][
'train_program'
],
\
self
.
_build_param
[
'model'
][
'startup_program'
]):
with
fluid
.
unique_name
.
guard
():
for
phase
in
self
.
_build_phase
:
if
self
.
_build_nodes
[
phase
]
is
None
:
...
...
@@ -114,16 +171,19 @@ class FluidModel(Model):
self
.
_metrics
[
extend_output
[
'metric_label'
]]
=
extend_output
[
'metric_dict'
]
if
'inference_param'
in
extend_output
:
param_name
=
extend_output
[
'inference_param'
][
'name'
]
inference_param
=
extend_output
[
'inference_param'
]
param_name
=
inference_param
[
'name'
]
if
param_name
not
in
self
.
_build_param
[
'table'
]:
self
.
_build_param
[
'table'
][
param_name
]
=
{
'params'
:[]}
table_meta
=
kagle_table
.
TableMeta
.
alloc_new_table
(
extend_output
[
'inference_param'
]
[
'table_id'
])
table_meta
=
kagle_table
.
TableMeta
.
alloc_new_table
(
inference_param
[
'table_id'
])
self
.
_build_param
[
'table'
][
param_name
][
'_meta'
]
=
table_meta
self
.
_build_param
[
'table'
][
param_name
][
'params'
]
+=
extend_output
[
'inference_param'
]
[
'params'
]
self
.
_build_param
[
'table'
][
param_name
][
'params'
]
+=
inference_param
[
'params'
]
pass
@
classmethod
def
build_optimizer
(
self
,
params
):
"""R
"""
optimizer_conf
=
params
[
'optimizer_conf'
]
strategy
=
None
if
'strategy'
in
optimizer_conf
:
...
...
@@ -134,12 +194,15 @@ class FluidModel(Model):
model_metrics
=
metrics
[
name
]
stat_var_names
+=
[
model_metrics
[
metric
][
'var'
].
name
for
metric
in
model_metrics
]
strategy
[
'stat_var_names'
]
=
list
(
set
(
stat_var_names
))
optimizer_generator
=
'optimizer = fluid.optimizer.'
+
optimizer_conf
[
'class'
]
+
'(learning_rate='
+
str
(
optimizer_conf
[
'learning_rate'
])
+
')'
optimizer_generator
=
'optimizer = fluid.optimizer.'
+
optimizer_conf
[
'class'
]
+
\
'(learning_rate='
+
str
(
optimizer_conf
[
'learning_rate'
])
+
')'
exec
(
optimizer_generator
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
,
strategy
=
strategy
)
return
optimizer
def
dump_model_program
(
self
,
path
):
"""R
"""
with
open
(
path
+
'/'
+
self
.
_name
+
'_main_program.pbtxt'
,
"w"
)
as
fout
:
print
>>
fout
,
self
.
_build_param
[
'model'
][
'train_program'
]
with
open
(
path
+
'/'
+
self
.
_name
+
'_startup_program.pbtxt'
,
"w"
)
as
fout
:
...
...
@@ -147,6 +210,8 @@ class FluidModel(Model):
pass
def
shrink
(
self
,
params
):
"""R
"""
scope
=
params
[
'scope'
]
decay
=
params
[
'decay'
]
for
param_table
in
self
.
_build_param
[
'table'
]:
...
...
@@ -154,9 +219,13 @@ class FluidModel(Model):
fleet
.
shrink_dense_table
(
decay
,
scope
=
scope
,
table_id
=
table_id
)
def
dump_inference_program
(
self
,
inference_layer
,
path
):
"""R
"""
pass
def
dump_inference_param
(
self
,
params
):
"""R
"""
scope
=
params
[
'scope'
]
executor
=
params
[
'executor'
]
program
=
self
.
_build_param
[
'model'
][
'train_program'
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录