base.py 10.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiexionghang 已提交
15
import abc
X
xiexionghang 已提交
16 17
import copy
import yaml
T
tangwei 已提交
18
import paddle.fluid as fluid
T
tangwei 已提交
19
from ..utils import table as table
X
xiexionghang 已提交
20 21
from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet

T
tangwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

class Layer(object):
    """R
    """
    __metaclass__ = abc.ABCMeta

    def __init__(self, config):
        """R
        """
        pass

    def generate(self, mode, param):
        """R
        """
        if mode == 'fluid':
            return self.generate_fluid(param)
        elif mode == 'tensorflow':
            return self.generate_tensorflow(param)
        print('unsupport this mode: ' + mode)
        return None, None

    @abc.abstractmethod
    def generate_fluid(self, param):
        """R
        """
        pass

    def generate_tensorflow(self, param):
        """ Not implement currently
        """
        pass


X
xiexionghang 已提交
55
def create(config):
X
xiexionghang 已提交
56 57 58
    """
    Create a model instance by config
    Args:
T
tangwei 已提交
59
        config(dict) : desc model type and net
X
xiexionghang 已提交
60 61 62
    Return:
        Model Instance
    """
X
xiexionghang 已提交
63 64
    model = None
    if config['mode'] == 'fluid':
T
tangwei 已提交
65
        model = YamlModel(config)
X
xiexionghang 已提交
66 67
        model.build_model()
    return model
T
tangwei 已提交
68

X
xiexionghang 已提交
69

X
xiexionghang 已提交
70
class Model(object):
X
xiexionghang 已提交
71 72 73
    """R
    """
    __metaclass__ = abc.ABCMeta
X
xiexionghang 已提交
74 75

    def __init__(self, config):
X
xiexionghang 已提交
76 77
        """R
        """
X
xiexionghang 已提交
78 79 80 81 82
        self._config = config
        self._name = config['name']
        f = open(config['layer_file'], 'r')
        self._build_nodes = yaml.safe_load(f.read())
        self._build_phase = ['input', 'param', 'summary', 'layer']
T
tangwei 已提交
83 84
        self._build_param = {'layer': {}, 'inner_layer': {}, 'layer_extend': {}, 'model': {}}
        self._inference_meta = {'dependency': {}, 'params': {}}
X
xiexionghang 已提交
85 86 87 88
        self._cost = None
        self._metrics = {}
        self._data_var = []
        pass
T
tangwei 已提交
89

X
xiexionghang 已提交
90
    def get_cost_op(self):
X
xiexionghang 已提交
91 92
        """R
        """
X
xiexionghang 已提交
93 94 95
        return self._cost

    def get_metrics(self):
X
xiexionghang 已提交
96 97
        """R
        """
X
xiexionghang 已提交
98 99
        return self._metrics

X
xiexionghang 已提交
100
    @abc.abstractmethod
X
xiexionghang 已提交
101
    def shrink(self, params):
X
xiexionghang 已提交
102 103
        """R
        """
T
tangwei 已提交
104
        pass
X
xiexionghang 已提交
105

X
xiexionghang 已提交
106
    @abc.abstractmethod
T
tangwei 已提交
107
    def build_model(self):
X
xiexionghang 已提交
108 109
        """R
        """
X
xiexionghang 已提交
110 111
        pass

X
xiexionghang 已提交
112
    @abc.abstractmethod
X
xiexionghang 已提交
113
    def dump_model_program(self, path):
X
xiexionghang 已提交
114 115
        """R
        """
X
xiexionghang 已提交
116 117
        pass

X
xiexionghang 已提交
118
    @abc.abstractmethod
X
xiexionghang 已提交
119
    def dump_inference_param(self, params):
X
xiexionghang 已提交
120 121
        """R
        """
X
xiexionghang 已提交
122
        pass
X
xiexionghang 已提交
123

X
xiexionghang 已提交
124
    @abc.abstractmethod
X
xiexionghang 已提交
125
    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
126 127
        """R
        """
X
xiexionghang 已提交
128
        pass
T
tangwei 已提交
129

X
xiexionghang 已提交
130
    def inference_params(self, inference_layer):
X
xiexionghang 已提交
131
        """
T
tangwei 已提交
132
        get params name for inference_layer
X
xiexionghang 已提交
133 134 135 136 137
        Args:
            inference_layer(str): layer for inference
        Return:
            params(list): params name list that for inference layer
        """
X
xiexionghang 已提交
138 139 140
        layer = inference_layer
        if layer in self._inference_meta['params']:
            return self._inference_meta['params'][layer]
T
tangwei 已提交
141

X
xiexionghang 已提交
142 143 144 145 146 147
        self._inference_meta['params'][layer] = []
        self._inference_meta['dependency'][layer] = self.get_dependency(self._build_param['inner_layer'], layer)
        for node in self._build_nodes['layer']:
            if node['name'] not in self._inference_meta['dependency'][layer]:
                continue
            if 'inference_param' in self._build_param['layer_extend'][node['name']]:
X
xiexionghang 已提交
148
                self._inference_meta['params'][layer] += \
T
tangwei 已提交
149
                    self._build_param['layer_extend'][node['name']]['inference_param']['params']
X
xiexionghang 已提交
150 151 152
        return self._inference_meta['params'][layer]

    def get_dependency(self, layer_graph, dest_layer):
X
xiexionghang 已提交
153
        """
T
tangwei 已提交
154
        get model of dest_layer depends on
X
xiexionghang 已提交
155
        Args:
T
tangwei 已提交
156
            layer_graph(dict) : all model in graph
X
xiexionghang 已提交
157
        Return:
T
tangwei 已提交
158
            depend_layers(list) : sub-graph model for calculate dest_layer
X
xiexionghang 已提交
159
        """
X
xiexionghang 已提交
160 161 162 163 164 165 166 167
        dependency_list = []
        if dest_layer in layer_graph:
            dependencys = copy.deepcopy(layer_graph[dest_layer]['input'])
            dependency_list = copy.deepcopy(dependencys)
            for dependency in dependencys:
                dependency_list = dependency_list + self.get_dependency(layer_graph, dependency)
        return list(set(dependency_list))

T
tangwei 已提交
168 169

class YamlModel(Model):
X
xiexionghang 已提交
170 171
    """R
    """
X
xiexionghang 已提交
172
    def __init__(self, config):
X
xiexionghang 已提交
173 174
        """R
        """
X
xiexionghang 已提交
175 176
        Model.__init__(self, config)
        pass
T
tangwei 已提交
177 178

    def build_model(self):
X
xiexionghang 已提交
179 180 181 182 183 184 185 186 187
        """R
        build a fluid model with config
        Return:
            modle_instance(dict)
                train_program
                startup_program
                inference_param : all params name list
                table: table-meta to ps-server
        """
X
xiexionghang 已提交
188 189
        for layer in self._build_nodes['layer']:
            self._build_param['inner_layer'][layer['name']] = layer
T
tangwei 已提交
190

X
xiexionghang 已提交
191 192 193
        self._build_param['table'] = {}
        self._build_param['model']['train_program'] = fluid.Program()
        self._build_param['model']['startup_program'] = fluid.Program()
X
xiexionghang 已提交
194
        with fluid.program_guard(self._build_param['model']['train_program'], \
T
tangwei 已提交
195
                                 self._build_param['model']['startup_program']):
X
xiexionghang 已提交
196 197 198 199 200
            with fluid.unique_name.guard():
                for phase in self._build_phase:
                    if self._build_nodes[phase] is None:
                        continue
                    for node in self._build_nodes[phase]:
T
tangwei 已提交
201
                        exec("""layer=layer.{}(node)""".format(node['class']))
X
xiexionghang 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
                        layer_output, extend_output = layer.generate(self._config['mode'], self._build_param)
                        self._build_param['layer'][node['name']] = layer_output
                        self._build_param['layer_extend'][node['name']] = extend_output
                        if extend_output is None:
                            continue
                        if 'loss' in extend_output:
                            if self._cost is None:
                                self._cost = extend_output['loss']
                            else:
                                self._cost += extend_output['loss']
                        if 'data_var' in extend_output:
                            self._data_var += extend_output['data_var']
                        if 'metric_label' in extend_output and extend_output['metric_label'] is not None:
                            self._metrics[extend_output['metric_label']] = extend_output['metric_dict']

                        if 'inference_param' in extend_output:
X
xiexionghang 已提交
218 219
                            inference_param = extend_output['inference_param']
                            param_name = inference_param['name']
X
xiexionghang 已提交
220
                            if param_name not in self._build_param['table']:
T
tangwei 已提交
221
                                self._build_param['table'][param_name] = {'params' :[]}
T
tangwei 已提交
222
                                table_meta = table.TableMeta.alloc_new_table(inference_param['table_id'])
X
xiexionghang 已提交
223
                                self._build_param['table'][param_name]['_meta'] = table_meta
X
xiexionghang 已提交
224
                            self._build_param['table'][param_name]['params'] += inference_param['params']
X
xiexionghang 已提交
225
        pass
T
tangwei 已提交
226

X
xiexionghang 已提交
227 228
    @classmethod
    def build_optimizer(self, params):
X
xiexionghang 已提交
229 230
        """R
        """
X
xiexionghang 已提交
231 232 233 234 235 236 237 238
        optimizer_conf = params['optimizer_conf']
        strategy = None
        if 'strategy' in optimizer_conf:
            strategy = optimizer_conf['strategy']
            stat_var_names = []
            metrics = params['metrics']
            for name in metrics:
                model_metrics = metrics[name]
X
xiexionghang 已提交
239
                stat_var_names += [model_metrics[metric]['var'].name for metric in model_metrics]
X
xiexionghang 已提交
240
            strategy['stat_var_names'] = list(set(stat_var_names))
X
xiexionghang 已提交
241
        optimizer_generator = 'optimizer = fluid.optimizer.' + optimizer_conf['class'] + \
T
tangwei 已提交
242 243
                              '(learning_rate=' + str(optimizer_conf['learning_rate']) + ')'
        exec(optimizer_generator)
X
xiexionghang 已提交
244 245 246 247
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        return optimizer

    def dump_model_program(self, path):
X
xiexionghang 已提交
248 249
        """R
        """
X
xiexionghang 已提交
250 251 252 253 254 255 256
        with open(path + '/' + self._name + '_main_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['train_program']
        with open(path + '/' + self._name + '_startup_program.pbtxt', "w") as fout:
            print >> fout, self._build_param['model']['startup_program']
        pass

    def shrink(self, params):
X
xiexionghang 已提交
257 258
        """R
        """
X
xiexionghang 已提交
259 260 261 262 263 264 265
        scope = params['scope']
        decay = params['decay']
        for param_table in self._build_param['table']:
            table_id = self._build_param['table'][param_table]['_meta']._table_id
            fleet.shrink_dense_table(decay, scope=scope, table_id=table_id)

    def dump_inference_program(self, inference_layer, path):
X
xiexionghang 已提交
266 267
        """R
        """
X
xiexionghang 已提交
268 269 270
        pass

    def dump_inference_param(self, params):
X
xiexionghang 已提交
271 272
        """R
        """
X
xiexionghang 已提交
273 274 275
        scope = params['scope']
        executor = params['executor']
        program = self._build_param['model']['train_program']
X
xiexionghang 已提交
276
        for table_name, table in self._build_param['table'].items():
X
xiexionghang 已提交
277 278 279
            fleet._fleet_ptr.pull_dense(scope, table['_meta']._table_id, table['params'])
        for infernce_item in params['inference_list']:
            params_name_list = self.inference_params(infernce_item['layer_name'])
X
xiexionghang 已提交
280
            params_var_list = [program.global_block().var(i) for i in params_name_list]
X
xiexionghang 已提交
281 282 283
            params_file_name = infernce_item['save_file_name']
            with fluid.scope_guard(scope):
                if params['save_combine']:
X
xiexionghang 已提交
284
                    fluid.io.save_vars(executor, "./", \
T
tangwei 已提交
285
                                       program, vars=params_var_list, filename=params_file_name)
X
xiexionghang 已提交
286 287
                else:
                    fluid.io.save_vars(executor, params_file_name, program, vars=params_var_list)