# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import copy import yaml import paddle.fluid as fluid from ..utils import table as table from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet class Layer(object): """R """ __metaclass__ = abc.ABCMeta def __init__(self, config): """R """ pass def generate(self, mode, param): """R """ if mode == 'fluid': return self.generate_fluid(param) elif mode == 'tensorflow': return self.generate_tensorflow(param) print('unsupport this mode: ' + mode) return None, None @abc.abstractmethod def generate_fluid(self, param): """R """ pass def generate_tensorflow(self, param): """ Not implement currently """ pass def create(config): """ Create a model instance by config Args: config(dict) : desc model type and net Return: Model Instance """ model = None if config['mode'] == 'fluid': model = YamlModel(config) model.build_model() return model class Model(object): """R """ __metaclass__ = abc.ABCMeta def __init__(self, config): """R """ self._config = config self._name = config['name'] f = open(config['layer_file'], 'r') self._build_nodes = yaml.safe_load(f.read()) self._build_phase = ['input', 'param', 'summary', 'layer'] self._build_param = {'layer': {}, 'inner_layer': {}, 'layer_extend': {}, 'model': {}} self._inference_meta = {'dependency': {}, 'params': {}} self._cost = None self._metrics = {} self._data_var = [] pass def get_cost_op(self): """R """ return self._cost def get_metrics(self): """R """ return self._metrics @abc.abstractmethod def shrink(self, params): """R """ pass @abc.abstractmethod def build_model(self): """R """ pass @abc.abstractmethod def dump_model_program(self, path): """R """ pass @abc.abstractmethod def dump_inference_param(self, params): """R """ pass @abc.abstractmethod def dump_inference_program(self, inference_layer, path): """R """ pass def inference_params(self, inference_layer): """ get params name for inference_layer Args: inference_layer(str): layer for inference Return: params(list): params name list that for inference layer """ layer = inference_layer if layer in self._inference_meta['params']: return self._inference_meta['params'][layer] self._inference_meta['params'][layer] = [] self._inference_meta['dependency'][layer] = self.get_dependency(self._build_param['inner_layer'], layer) for node in self._build_nodes['layer']: if node['name'] not in self._inference_meta['dependency'][layer]: continue if 'inference_param' in self._build_param['layer_extend'][node['name']]: self._inference_meta['params'][layer] += \ self._build_param['layer_extend'][node['name']]['inference_param']['params'] return self._inference_meta['params'][layer] def get_dependency(self, layer_graph, dest_layer): """ get model of dest_layer depends on Args: layer_graph(dict) : all model in graph Return: depend_layers(list) : sub-graph model for calculate dest_layer """ dependency_list = [] if dest_layer in layer_graph: dependencys = copy.deepcopy(layer_graph[dest_layer]['input']) dependency_list = copy.deepcopy(dependencys) for dependency in dependencys: dependency_list = dependency_list + self.get_dependency(layer_graph, dependency) return list(set(dependency_list)) class YamlModel(Model): """R """ def __init__(self, config): """R """ Model.__init__(self, config) pass def build_model(self): """R build a fluid model with config Return: modle_instance(dict) train_program startup_program inference_param : all params name list table: table-meta to ps-server """ for layer in self._build_nodes['layer']: self._build_param['inner_layer'][layer['name']] = layer self._build_param['table'] = {} self._build_param['model']['train_program'] = fluid.Program() self._build_param['model']['startup_program'] = fluid.Program() with fluid.program_guard(self._build_param['model']['train_program'], \ self._build_param['model']['startup_program']): with fluid.unique_name.guard(): for phase in self._build_phase: if self._build_nodes[phase] is None: continue for node in self._build_nodes[phase]: exec("""layer=layer.{}(node)""".format(node['class'])) layer_output, extend_output = layer.generate(self._config['mode'], self._build_param) self._build_param['layer'][node['name']] = layer_output self._build_param['layer_extend'][node['name']] = extend_output if extend_output is None: continue if 'loss' in extend_output: if self._cost is None: self._cost = extend_output['loss'] else: self._cost += extend_output['loss'] if 'data_var' in extend_output: self._data_var += extend_output['data_var'] if 'metric_label' in extend_output and extend_output['metric_label'] is not None: self._metrics[extend_output['metric_label']] = extend_output['metric_dict'] if 'inference_param' in extend_output: inference_param = extend_output['inference_param'] param_name = inference_param['name'] if param_name not in self._build_param['table']: self._build_param['table'][param_name] = {'params' :[]} table_meta = table.TableMeta.alloc_new_table(inference_param['table_id']) self._build_param['table'][param_name]['_meta'] = table_meta self._build_param['table'][param_name]['params'] += inference_param['params'] pass @classmethod def build_optimizer(self, params): """R """ optimizer_conf = params['optimizer_conf'] strategy = None if 'strategy' in optimizer_conf: strategy = optimizer_conf['strategy'] stat_var_names = [] metrics = params['metrics'] for name in metrics: model_metrics = metrics[name] stat_var_names += [model_metrics[metric]['var'].name for metric in model_metrics] strategy['stat_var_names'] = list(set(stat_var_names)) optimizer_generator = 'optimizer = fluid.optimizer.' + optimizer_conf['class'] + \ '(learning_rate=' + str(optimizer_conf['learning_rate']) + ')' exec(optimizer_generator) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) return optimizer def dump_model_program(self, path): """R """ with open(path + '/' + self._name + '_main_program.pbtxt', "w") as fout: print >> fout, self._build_param['model']['train_program'] with open(path + '/' + self._name + '_startup_program.pbtxt', "w") as fout: print >> fout, self._build_param['model']['startup_program'] pass def shrink(self, params): """R """ scope = params['scope'] decay = params['decay'] for param_table in self._build_param['table']: table_id = self._build_param['table'][param_table]['_meta']._table_id fleet.shrink_dense_table(decay, scope=scope, table_id=table_id) def dump_inference_program(self, inference_layer, path): """R """ pass def dump_inference_param(self, params): """R """ scope = params['scope'] executor = params['executor'] program = self._build_param['model']['train_program'] for table_name, table in self._build_param['table'].items(): fleet._fleet_ptr.pull_dense(scope, table['_meta']._table_id, table['params']) for infernce_item in params['inference_list']: params_name_list = self.inference_params(infernce_item['layer_name']) params_var_list = [program.global_block().var(i) for i in params_name_list] params_file_name = infernce_item['save_file_name'] with fluid.scope_guard(scope): if params['save_combine']: fluid.io.save_vars(executor, "./", \ program, vars=params_var_list, filename=params_file_name) else: fluid.io.save_vars(executor, params_file_name, program, vars=params_var_list)